Journal of Theoretical Biology 365 (2015) 365-376

Journal of Theoretical Biology e

journal homepage: www.elsevier.com/locate/yjtbi

Contents lists available at ScienceDirect x Journal of
Theoretical
'Biok)gy o

P s

f

Network impact on persistence in a finite population dynamic

@ CrossMark

diffusion model: Application to an emergent seed exchange network

Pierre Barbillon *>*!, Mathieu Thomas *>“!, Isabelle Goldringer ¢,
Frédéric Hospital ¢, Stéphane Robin *°

2 AgroParisTech / UMR INRA MIA, F-75005 Paris, France
b INRA, UMR 518, F-75005 Paris, France

€INRA, UMR 0320 / UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
4 INRA, UMR 1313 Génétique Animale et Biologie Intégrative, F-78352 Jouy-en-Josas, France

HIGHLIGHTS

e A dynamic stochastic Extinction-Colonisation Model (ECM) is studied (SIS-like).

e We show that deterministic approximations of the model are not sufficient.

e A sensitivity analysis allows us to assess the influence of network topology on ECM.
e The role of the topology is shown crucial in situations where uncertainties are high.
e ECM is applied to model seed circulation of crop plant within farmer networks.
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Dynamic extinction colonisation models (also called contact processes) are widely studied in epidemiology
and in metapopulation theory. Contacts are usually assumed to be possible only through a network of
connected patches. This network accounts for a spatial landscape or a social organization of interactions.
Thanks to social network literature, heterogeneous networks of contacts can be considered. A major issue is
to assess the influence of the network in the dynamic model. Most work with this common purpose uses
deterministic models or an approximation of a stochastic Extinction-Colonisation model (sEC) which are
relevant only for large networks. When working with a limited size network, the induced stochasticity is
essential and has to be taken into account in the conclusions. Here, a rigorous framework is proposed for
limited size networks and the limitations of the deterministic approximation are exhibited. This framework
allows exact computations when the number of patches is small. Otherwise, simulations are used and
enhanced by adapted simulation techniques when necessary. A sensitivity analysis was conducted to
compare four main topologies of networks in contrasting settings to determine the role of the network.
A challenging case was studied in this context: seed exchange of crop species in the Réseau Semences
Paysannes (RSP), an emergent French farmers' organisation. A stochastic Extinction-Colonisation model was
used to characterize the consequences of substantial changes in terms of RSP's social organization on the
ability of the system to maintain crop varieties.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

and Bascompte, 2006). These models are grounded on an asymp-
totic approximation in the number of patches. The same models

To deal with the persistence of a metapopulation in a dynamic
extinction-colonisation model, several studies have used determi-
nistic models where the evolution is described by differential
equations (see Levins, 1969; Hanski and Ovaskainen, 2000; Solé
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are used in epidemiology (SIS: Susceptible Infected Susceptible
model). More recently, some studies have dealt with the stochastic
effect due to a finite and limited number of patches/actors.
Chakrabarti et al. (2008) have proposed an approximation in the
stochastic model which leads to conclusions similar to the ones
obtained with deterministic models. Gilarranz and Bascompte
(2012) have shown by simulations the impact of stochasticity
due to a limited number of patches and they have underscored the
differences with the results obtained with deterministic models
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when comparing the ability of different networks to conserve a
metapopulation. However, their results depend only on the ratio of
the extinction rate to the colonisation rate which is not relevant in
a stochastic model. Indeed, as it will be shown in Section 2, the
same ratio values with different values of the extinction and
colonisation rates can lead to very different situations for the
dynamic of the metapopulation.

In this paper, we study the same stochastic model as Gilarranz
and Bascompte (2012). The patches can be in only two states:
occupied or empty. The dynamic consists in a succession of
extinction events followed by colonisation events. We provide a
rigorous theoretical basis to this model which explains the
different behaviours observed in the simulations. Indeed, the
stochastic model is a Markov chain and its transition matrix can
be constructed as done by Day and Possingham (1995). From this,
we deduce that there is a unique possible equilibrium which is the
absorbing state when all patches are empty. Moreover, the steady
state which can be observed where the number of occupied
patches seems to have reached an equilibrium corresponds to a
so-called quasi-stationary distribution of the Markov chain
(Darroch and Seneta, 1965; Méléard and Villemonais, 2012). On
this basis, in order to assess the persistence of a metapopulation,
we propose criteria which are adapted to the stochastic context. In
particular, since the metapopulation will become extinct in any
case, we decide to fix a limited time-horizon and to provide
conclusions relying on this time-horizon. We also show the
limitations of the asymptotic approximation. Furthermore, this
approach leads to exact computations provided that the number of
patches is not too large. Otherwise, simulations can be conducted
and enhanced by modified simulation techniques when necessary.

The goal of this study is to measure the impact of the interaction
network which describes the relationships between patches (during
colonisation events) on the behaviour of the dynamic model. Follow-
ing the metapopulation model, the network used to account for
heterogeneous spatial organization (Gilarranz and Bascompte, 2012)
can also be used to account for a social organization (Read et al.,
2008). Indeed, this work was designed in the context of social net-
works of farmers who exchange seeds, an important social process in
the diffusion and maintenance of crop biodiversity (reviewed in
Thomas et al., 2011). We assume that seeds spread through farmers'
relationships like an epidemiological process as suggested by
Pautasso et al. (2013). Relying on the study of the Réseau Semences
Paysannes (RSP) which is a French network of farmers involved in
seed exchange of heirloom crop species (Demeulenaere et al., 2008;
Demeulenaere and Bonneuil, 2011; Thomas et al., 2012), we compare
different scenarios of social organization and attest their effects on the
persistence of one crop variety.

The social network of farmers was not observed directly: seed
exchanges were observed as a realization of this network. From
these observations, we postulate characteristics of the network,
such as its density, to compare different likely topologies.

In the following, the network is assumed to be undirected and is
denoted by G. In the deterministic work (Hanski and Ovaskainen,
2000) or in approximation of the stochastic model (Chakrabarti et al.,
2008), the leading eigenvalue of the adjacency matrix of G is
sufficient to describe the impact of the network on persistence. We
show that this is no longer true in a stochastic model. We propose to
study four main network topologies which represent really distinct
organisations. These topologies are determined by generative mod-
els: an Erdos-Rényi model (Erdés and Rényi, 1959), a community
model (where connection inside a community is more likely than
between two patches from different communities), a preferential
attachment model (Albert and Barabasi, 2002) and a “lattice” model
where all nodes have approximately the same degree.

Two main conclusions can be derived from our work. First,
simple criteria such as the ratio between the extinction rate and

the diffusion rate, or the leading eigenvalue are not sufficient to
understand the dynamic of the process. Second, the topology of
the network and, more specifically, the evolution of this topology
can impact the efficiency of variety maintenance.

In Section 2, a full description and an analysis of the sEC model are
provided together with the algorithms used in simulations. The limits
of the deterministic approximation are presented. The topologies for
networks are detailed in Section 3. We conducted a sensitivity
analysis to measure the impact of the topology in contrasting settings.
The results are presented in Section 4. A motivating application of this
work in Section 5 studied the persistence of one crop variety in a
farmers' network of seed exchange.

2. Model
2.1. Notations

The following notations are used:

n number of patches (farms)

G interaction network between patches

d density of the network

Nedges number of edges

e extinction rate

c colonisation rate

Ngen number of studied generations

Z; state of the system

H#HZ; number of occupied patches for state Z;

P(#Z; > 0) probability of persistence at generations t
E(#Z:) expected number of occupied patches at
generations ¢t

2.2. Model definition

The model describes the presence or absence of a crop variety
on n different farms (patches according to metapopulation voca-
bulary) during a discrete time evolution process. This metapopula-
tion is identified with an undirected network G with n nodes
(farms) and adjacency matrix A = [a;];; were a;; = 1 if patches i and
j are connected (i~j) and O otherwise. Since the network is
undirected, this matrix is symmetric.

We further denote by Z;, the occupancy of patch i (i=1...n) at
time t, namely Z;;=1 if patch i is occupied at time t and
0 otherwise. The vector Z; = [Z;;]; depicts the composition of the
whole metapopulation at time t.

A time step corresponds to a generation of culture. Between
two generations, two events can occur: extinction and colonisa-
tion with respective rates e and c. Within each time step, extinc-
tion events first take place and occur in occupied patches
independently of the others, with a probability e, supposed to be
constant over patches and time. Colonisations events then take
place and are only possible between patches linked according to
the static relational network G. An empty patch can be colonised
by an occupied patch with a probability c. This probability is also
assumed constant over linked patches and time steps.

Thus, the probability that the patch i, if empty at generation t, is
not colonised between generations t and t+1 is equal to (1—¢)%
where o; is the number of its occupied neighbours at generation t:
Ojr = Z]-a,-ij,t.

This model is similar to the one proposed in Gilarranz and
Bascompte (2012) and also to the epidemic model used in
Chakrabarti et al. (2008). It can also be seen as a particular case
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of the models discussed in Adler and Nuernberger (1994), Day and
Possingham (1995), Hanski and Ovaskainen (2000).

2.3. Model properties

As recalled in Day and Possingham (1995), the stochastic
process (Zy), .y is a discrete time Markov chain with 2" possible
states. The matrices describing the colonisation C and the extinc-
tion E can be constructed and the transition matrix of (Z;), ., is
obtained as the product of these two matrices: M=E-C. We
assume here that Z; is irreducible and aperiodic which is ensured if
the adjacency matrix A of the social network has only one
connected component. In the sequel, we denote by Ag) the kth
eigenvalue of any matrix B. Indeed, according to the Perron-
Frobenius theorem, the leading eigenvalue of M is Ay =1, its
multiplicity is 1 and the corresponding eigenvector is the sta-
tionary distribution. If e >0, this unique stationary distribution
consists of being stuck in one state, denoted by 0 and called
absorbing state or coffin state. The coffin state corresponds to all
patches empty which means that the variety is extinct. Thus,
if Z,=0, for any s > t, Z;=0. We denote by T, the extinction time:

TO =inf {t > O, #Zt = 0}

Since the number of states is finite, P,(To < oc)=1 for any
initial state z (P, denotes the probability measure associated with
the chain Z; and initial state Zo =2z). The second eigenvalue Ay,
governs the rate of convergence toward the absorbing state, i.e.

P(To > t) = P,(#Z; > 0) = 0(4}y,)- 1

The smaller this eigenvalue is, the faster the convergence is.
Hence, we can study the probability of extinction in a given
number of generations or the mean time to extinction for an
initial condition on occupancies at generation 0, a network and a
set of parameters.

2.3.1. Quasi-stationary phase

Although extinction is almost sure, the probability of reaching
extinction in a realistic number of generations can still be small. In
that case, we aim to study the behaviour of this dynamic before
extinction. In some cases, the Markov chain Z; conditioned to non-
extinction {Ty >t} converges toward a so-called quasi-stationary
distribution (Darroch and Seneta, 1965; Méléard and Villemonais,
2012). This quasi-stationary distribution exists and is unique
provided that Z; is irreducible and aperiodic. Note that quasi-
stationary distribution may also exist in reducible chains (van
Doorn and Pollett, 2009). The transition matrix on the transient
states, denoted by R, has dimension (2"—-1)x (2"—1) and is
defined as a sub-matrix of M by deleting its first row and its first
column, corresponding to the coffin state. If it exists, the quasi-
stationary distribution is given by normalizing the eigenvector of
the reduced matrix R associated with its leading eigenvalue g ;.
We denote by « this distribution over the transient states. It can be
noticed that Ag1 =Am2. As stated in Darroch and Seneta (1965),

Meéléard and Villemonais (2012),
MR2|>‘
=0( (—= . 2
(( i ) @

Therefore, the quasi-stationary distribution is met in practice if the
Markov chain converges faster toward it than toward the absorb-
ing state which corresponds to |ig2|/Ag1<g1-

Building the transition matrix allows an exact study of the
dynamic of the variety persistence. However, this exact study
requires to compute the eigenvalue of a 2" x 2" matrix. Because
the complexity of matrix diagonalisation is cubic, it can not be

sup P,(Z:=Z|Tog>t)—ay

z,z'transient states

achieved for, say, n > 10. Therefore, for bigger n, we have to run
simulations.

2.3.2. Large network approximation

Another solution is to use an approximate version of the model
as proposed by Chakrabarti et al. (2008). They describe the
recurrence relation between the probabilities of occupancies at
generation t+1 and these probabilities at generation t. In the
computation of the recurrence relation, they consider the occu-
pancies of the patches at generation t as independent of each
other. Thus, their relation involves only the n patches and not all of
the 2" possible configurations. This approximation leads to the
following relation:

Pit+1=1-Cirs1Dic€—Cirr1(1=Djp), 3

where p;, is the probability of occupancy of patch i at generation ¢
and ¢;, is the probability that patch i is not colonised at generation
t. The following equation derives from the independence approx-
imation:

G = I (1-apye).

From this approximation, they derive a frontier between a pure
extinction and an equilibrium phase depending on e, ¢ and 1, the
leading eigenvalue of the adjacency matrix A of the network. If e/c is
above 141, a pure extinction shall take place, if it is below, the patch
occupancy shall reach an equilibrium where the number of occupied
patches varies around a constant number. More specifically, if
e/c> a1, the occupancy probabilities (p;,) tend to 0 (0 is a stable
fixed point). Moreover, in the case where e/[c(1 —e€)] > 441, the decay
over time of the p;; is exponential, p;; = O(1—e+c(1—e)} )b for
any 1 <i<n. Otherwise, if e/c < 141, there exists a fixed point with
non-zero probabilities of occupancies. This non-zero equilibrium
clashes with the almost sure convergence of the Markov chain
toward the coffin state.

The frontier e/c =1, is also found to be a relevant threshold
for persistence in deterministic models such as the Levins model
(Levins, 1969) and its spatially realistic versions (Hanski and
Ovaskainen, 2000; Solé and Bascompte, 2006). In a stochastic
model, extinction eventually takes place since there is an absorb-
ing state. From the previous statements on the quasi-stationary
distribution, observing an equilibrium phase on simulations as in
Gilarranz and Bascompte (2012) actually corresponds to a phase
where the Markov chain relaxes in its quasi-stationary distribution
and does not reach the absorbing state during the finite number of
generations. As an example, for a network with 100 patches, we
present two typical cases in Fig. 1: when extinction is likely in 100
generations (replications in solid black lines) and when a quasi-
equilibrium is reached (replications in broken grey lines). If the
simulations are run long enough, the quasi-equilibrium will be left
and the system will converge to the coffin state.

In the context of continuous-time SIS model, some studies
define a so-called “metastable” state as the steady state of a mean-
field approximation of the exact SIS model (Van Mieghem, 2011; Li
et al., 2012; Pastor-Satorras and Vespignani, 2001) or as the steady
state of a ¢-SIS model (Hill et al., 2010; Van Mieghem and Cator,
2012). In ¢-SIS model, e corresponds to the rate of self-infection for
a patch. This self-infection process prevents the system from being
absorbed in the coffin state. Another solution to avoid absorption
is to modify the SIS model such that no healing (or extinction) is
possible when there is only one patch infected (or occupied) (Cator
and Van Mieghem, 2013). In these works, the authors propose to
slightly modify the model, in order to prevent extinction so that
the “metastable” behavior can be studied. Our approach differs in
two ways from these papers. First we consider a discrete time
model. Second - and most importantly - we do not modify the
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model and focus on the quasi-stationary distribution as defined by
Darroch and Seneta (1965). Note that this notion can be extended
to continuous-time Markov chain (see Darroch and Seneta, 1967).

2.3.3. Finite horizon study

In a stochastic model, an extinction threshold does not make
sense. We advocate focusing on quantities such as the extinction
probability in a given realistic number of generations and the
mean number of occupied patches at this generation. We aim to
study the impact of the network on persistence through its impact
on these two quantities. Moreover, the impact of e and ¢ must also
be taken into account and not only through the ratio e/c. Indeed,
two settings with the same ratio e/c lead to very different results
in a stochastic model according to the order of magnitude of e and
c. For a fixed network with 10 nodes and for a fixed network with
100 nodes - which corresponds to the average size of seed
exchange networks (see Subedi et al., 2003; Aw-Hassan et al.,
2008; Demeulenaere et al., 2008; Abay et al., 2011; Eloy and
Emperaire, 2011; Calvet-Mir et al., 2012; Reyes-Garcéa et al., 2013;
Kawa et al, 2013) - we computed (exactly with 10 nodes,
estimated with 100 nodes) the probability of extinction in 100
generations P, (T < 100) = P, (#Z100 = 0) for different values of e
and c. Here, the initial state z, is chosen such that all patches are

100 ~

80 A

60 A

#7,

40

20 A

Fig. 1. Number of occupied patches for replications from the dynamic model over
100 generations, network fixed and parameters fixed at c=0.05 and e=0.25 (black
solid lines) or e=0.05 (grey broken lines). The initial state was chosen such that all
patches are occupied.
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occupied. The color maps of these probabilities are displayed in
Fig. 2A and B.

The white line corresponds to the level e/c =147 which is the
frontier obtained when using the large network approximation. As
observed in this case of a finite network, this line fails to sepa-
rate cases with a high probability of extinction from the others.
Furthermore, as we want to take the stochasticity of the model due
to a finite number of patches into account, a threshold would not
be relevant. Actually, there exists a fuzzy band where there is very
little confidence in the behavior of the system (Fig. 2).

From these remarks, we decided to conduct finite horizon
analyses in the following sections. The time horizon was chosen
with respect to the application. Both, the probability of persistence
and the mean number of occupied patches were studied to
quantify the impact of the network topology in different settings
depending on the values of the parameters e and c. The next
section presents methods for simulation when the probability of
persistence is hard to compute.

2.4. Methods for simulations

Since the model is a Markov chain in a finite state space,
simulating is quite easy. Hence, the probability of persistence after
100 generations P(To > 100) and the mean number of occupied
patches at the 100th generation [E(#Zip0) can be estimated.
However, in cases where persistence is very likely or very unlikely,
a large number of simulations are necessary to achieve precision in
the estimate of the persistence probability. Indeed, we can face
two kinds of rare events: rare extinction, or rare persistence. Some
techniques related to the estimation of probabilities of rare events
were used. They are based on importance sampling and interact-
ing particle systems.

2.4.1. Rare persistence

A very simple interacting particle system (Del Moral and
Doucet, 2009) is efficient in this case. The idea is to consider
simultaneous trajectories (particles) and regenerate the ones
which have been trapped in the coffin state (extinction) among
the surviving particles.

Algorithm 1.

o Initialisation: N particles set at Zf) =(,...,)foranyi=1,...,N.
o Iterations: t=1,...,100:

0.05

1.0
0.04

0.8
0.03 0.6

(&

0.02 0.4

0.2
0.01

0.0

0.14

0.06 0.08 0.10 0.12 0.16 0.18 0.20

e

Fig. 2. Probabilities of extinction in 100 generations for varying values of e and c: (A) Erdés-Rényi network with 10 nodes and 14 edges and (B) Erdés-Rényi network with

100 nodes and 495 edges.
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- Mutation Each particle evolvesNiindependently according to
the Markov model (obtaining Z, from _Z’F] by simulation).
- Selection/Regeneration: If Z lt =0, then Z; is randomly cposen

among the surviving particles th # 0. Otherwise Zl; :th.
Compute #E, = YN_,1(Z, = 0)/N.

Note that the product []}%, #E; is then an unbiased estimator
of P(Tg < 100) (Del Moral and Doucet, 2009).

A sufficient number of particles N must be chosen to ensure
that not all the particles die during a mutation step.

2.4.2. Rare extinction

If the probability of persistence is high, a lot of simulations are
necessary to observe at least one extinction. If no extinction is
observed, then the estimate of the extinction probability is zero. To
improve the estimator, we have to make extinction more likely in
the simulation and to apply a correction in the final estimator such
that the estimator is still unbiased. Two methods are proposed to
achieve this goal: an importance sampling method and a splitting
method (Rubino and Tuffin, 2009).

The importance sampling is applied on the extinction phase by
increasing the extinction rate e in the simulations. Indeed, since
extinction occurs independently in patches, the ratios due to the
change in distribution is tractable.

Algorithm 2.

o Initialisation: Z, = (1, ..., 1), a vector (e, ..., e%,,) with size the
number of generations of twisted extinction rate (the twisted
rate is not necessarily the same throughout generations) is
chosen.

o Iterations: t=1,...,100:

- Extinction Extinction is simulated with the corresponding
twisted extinction rate el and the ratio is computed as

. e de 1—e #Zp 1 —d;
t=\—x5] "\ )
els 1—eb

where d, is the number of extinction events which occur at
generation t and #Z,_1—d; gives the number of occupied
patches which do not become extinct at generation t.

- Colonisation: Colonisation is applied according to the model.

Hence, the unbiased estimator of P(Ty < 100) for N simulations
obtained according to the previous algorithm ((Zi)te(OJOO) with
ratios (ri); . o.100 i=1.....N ) is
1 N 100 . .

— 3 I rt x I(Z, =0).

Ni =1t=1

Since the simulations/particles do not interact, the computation
can be done in parallel. Although the variance of this estimator is
not tractable in a closed form, it can still be shown that the
variance is smaller if the vector (e¥, ..., e, is chosen such that ef’
increases with t.

Another solution is to use a splitting technique. The rare event,
which is extinction here, is split into intermediate less rare events.
The extinction corresponds to zero occupied patches at generation
100. An intermediate rare event is the number of occupied patches
being less than a given threshold S at any generation between
0 and 100. A sequence of thresholds Sy > S,--- > S, is fixed and the
probability of extinction in 100 generations reads as

P(Z100 =0)=P(3t, Z;=0)
=P(3t, Z: <S1) x P(3t, Z; <Sy|3t, Z: < Sy)
x-- x P(3t, Z; =0|3t, Z[SSP),

where 3t means implicitly 3t <100 and Z; <S, means #Z; < Sp,.

The algorithm will keep the trajectories that have crossed the first
threshold (the trajectories for which there is at least one state with
a number of occupied patches below S;). From these successful
trajectories, offspring are generated from the time of the first cross-
ing and then are kept if they cross the second threshold and so on.
The ratio of the successful trajectories over the total number of
simulated trajectories between threshold S,,_; and S,, is used to
estimate the probabilities P(3t, Z; < Sp|3t, Z; < Sm_1). The splitting
algorithm we use is in a fixed success setting that is to say the
algorithm waits for a given number of regenerated trajectories to
cross each threshold before moving to the next threshold. Hence, this
setting prevents degeneracy of the trajectories (no trajectory man-
ages to cross a threshold) and the precision is controlled in spite of
the computational effort (Amrein and Kiinsch, 2011).

Algorithm 3.

o Initialisation: N particles set to ZE, =(1,...,1) for any
i=1,...,N. Choose the sequence of decreasing thresholds
Si,...Sp and the number of successes Ngyccess: By convention,
Sp+1=0. Set the beginning level of trajectories LB:O and
starting state Zb = (1,...,1) for i=1, ..., Nuccess.

e For each threshold S,,, 1<m<p+1, set s=0 and k™=0 and
repeat until s = ngycces:

- Do kK™ =k™+1.
— Choose uniformly ie {1, ..., Nsyccess}-
- Simulate a trajectory from generation L, _, at state Z!, _;:

(Zf)Li,,,, <t<100°
— If there exists t such that Z; <S,, do

i. s=s+1,
ii. L, =inf {t, Z <Sp},
iiil. Z3,=2;; .

The unbiased estimator of the extinction probability is then

pﬁ1 Nsucces — 1
m=1 K"—1

The fixed success setting ensures the non-degeneracy of the
trajectories. However, there is no control on the complexity of the
algorithm. As a by-product, this algorithm also provides estimations
of the probabilities that the trajectories cross the intermediate
thresholds.

The case of rare extinction is more difficult since there is no
obvious method for efficiently computing the probability unlike
the case of rare persistence. In the two algorithms presented
above, the efficiency relies on the tuning of parameters, namely
the twisted extinction rates in Algorithm 2 and the sequence of
thresholds in Algorithm 3. In the present study, these parameters
have been set manually; the definition of a general tuning strategy
is out of the scope of this article.

3. Network topology

In the following we assume that the topology of a network
accounts for a kind of social organization among patches. The main
features of a topology are emphasised in order to make the
differences appear clearly. The topologies we compare are well
known in the literature, but we adapt the simulation models in
order to limit the variability by controlling the number of edges. Once
a number of edges is set (denoted by 1ege), a topology consists in a
way to distribute edges. To describe the topology of a network, the
distribution of the degrees of nodes is pertinent. We always work
under the constraint of a network with a single component. The
package igraph (Csardi and Nepusz, 2006) in R was used for
simulating networks for certain topologies and for plotting. We recall
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Fig. 3. Simulation of networks with 100 nodes and 247 edges according to Erdos-Rényi model (A), community model (B), lattice model (C), preferential attachment model

with power 1 (D) and power 3 (E). The size of a node is proportional to its degree.

that we assume that the network G is undirected. Fig. 3 provides
simulated networks with 100 nodes and 247 edges. They are
simulated according to the different topologies that we compare.

3.1. Erdés-Rényi model

This random graph model was introduced by Erdés and Rényi
(1959) and is defined as follows: for a chosen number of edges
Nedges, the network is constructed by choosing uniformly among all
the possible edges (1).

When the number of nodes is large, the distribution of the
degrees of nodes is close to a Poisson distribution (Albert and
Barabasi, 2002).

3.2. Community model

The community model was used to take into account cases
where networks are organised through communities. Inside a
community, the nodes are connected with a high probability
whereas the connection probability is weak between two nodes
belonging to two different communities. The spirit of this model is
drawn from Stochastic Block Model (Nowicki and Snijders, 2001).
The community sizes are set to be equal, the intra-community and
the inter-community connection probabilities are the same in
order to reduce the number of parameters for defining such a
network. This model is then tuned by the number of edges, the
number of communities and the ratio of the intra connection
probability over the inter connection probability (this ratio is
greater than 1 in order to favour intra connection).

3.3. Lattice model

The lattice model stands for organizations built on the basis of
the spatial neighborhood. We have taken a broad interpretation of
the lattice word, by considering graphs with quasi-equal degrees.
We propose a simulation model which is flexible since it works for
any number of nodes and edges. The main idea is to fix the
smallest upper bound on the degree of a node for given numbers
of nodes and edges. This upper bound is computed as the floor
integer number of 2n.4./n. First, a one dimension lattice is
created in order to ensure a single component graph. Then, edges
are added sequentially with a uniform distribution between nodes
which have not reached the bound on their degree. Hence, in such
a graph, all nodes have nearly the same role and importance.

3.4. Preferential attachment model

This version of the preferential attachment model was pro-
posed by Barabasi and Albert (1999). It was designed to model
growing networks and to capture the power-law tail of the degree
distribution which was noticed in real networks in many fields of
application. The nodes are added sequentially. In each step, a
single node is added and is connected to the nodes already in the
network with probability

P(connection to node Ny) oc degree(Ny)”,

where the power b is chosen in order to tune the strength of the
preferential attachment. This generative model tends to create
nodes with a high degree which have a central role in the network.
It is clearly opposed to the lattice model which makes the degrees
quasi homogeneous.
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To be able to fix the number of nodes and the number of edges
independently, we uniformly draw a sequence of edges added for
each new node with the constraint that there is at least one edge
(ensuring the single component network) and that the number of
edges to be added is less than the number of nodes already in the
network at a given step.

4. Global analysis of the impact of the topology

The aim was to conduct a sensitivity analysis based on the
chosen outputs of the stochastic model (mean number of occupied
patches and the persistence probability at generation 100: E(#Z100)
and P(#Z100 > 0)) with respect to its parameters: the extinction
rate e, the colonisation rate ¢ and the graph G. The graph is
parameterised by (i) its density d, i.e. the ratio between the
number of present edges and the number of possible edges:
n(n—1)/2 (which is related to the mean degree of the nodes),
and by (ii) its topology, i.e. the distribution of the edges between
the nodes given a total number of edges. The variation range of the
parameters was fixed in order to induce a context of weak, middle
and strong extinction since the aim is to study the impact of
the network topology in contrasted situations (see Table 1 for the
values used for the full factorial design of experiments). The
analyses were done for two cases for n=10 patches and n=100
patches. For n=10, exact computations were still achievable while
for n=100, the simulation methods presented in 2.4 were used.
We ensured that the simulations had reached a sufficient degree of
precision to consider that the part of variability in the outputs due
to the estimation method was negligible in comparison with the
variation due to the input parameter variation. Five kinds of
networks were compared: an Erdds-Rényi network, a community
network, a “lattice” network, and two preferential attachment
networks with powers 1 and 3. For the community model, only
one community setting was studied and the ratio of intra versus
inter connection probability was set at 100. When n=10, the
patches were equally split into two communities. When n=100,

Table 1
Values for exploration of the model with 10 patches or 100 patches.

Model parameters 10 patches 100 patches

e {0.05, 0.10, 0.15} {0.10, 0.20, 0.25}

c {0.01, 0.05, 0.10} {0.001, 0.005, 0.010}
d {30%, 50%, 70%} {5%, 10%, 30%}

P#Z,50)

0.0 1 LAT

20 40 60 80 100

o

the patches were equally split into five communities. For each
network structure, ten replicate networks were built with ran-
domly generated edges.

The sensitivity analyses were based on an analysis of variance.
The influence of the parameters and their interaction on
P(#Z100 > 0) (actually the logit of this probability) and on E(#Z100)
were assessed. The only source of variability was the randomness in
the graph generation. We recall that for n=10 the computations are
exact and for n=100, the estimates are precise enough to ensure the
significance. All these linear models had a coefficient of determina-
tion R? greater than 99.9%. As expected, the parameters e, ¢ and d
were by far the most important since a large range of variation was
explored for each of these parameters and since any of these
parameters could drive the system to extreme situations where
extinction is likely or rare. Nevertheless, the topology was still
significant. As suggested by the significance of high order interac-
tions, especially the ones involving topology, a topology was not
found to be uniformly (whatever the values of e, ¢ or d) better
(according to P(#Z199 > 0) or to E(#Z1¢0)) than the others.

The comparison based on E(#Z1¢9) has shown an inversion in
the ranking of the topologies which was similar to the one noticed
by Gilarranz and Bascompte (2012). This inversion appeared with
both n=10 and n=100 patches. When the combination of values
of e, c and d ensured persistence with a high probability, the best
topologies were those with a better balance in degree distribution
such as the lattice, ER and community topologies. However,
although the difference in mean was found significant, the order
of magnitude of this difference was only of a few patches ( ~ 5) for
n=100 patches. On the other hand, the topologies leading to some
very connected patches (hub) such as the preferential attachment
topologies (especially when the power parameter is set at 3)
maximized the number of occupied patches when the persistence
in the system is threatened in 100 generations. In that case, the
differences were more contrasted between topologies.

When the topologies were compared according to P(#Z199 > 0),
the same kind of inversion was noticed for n=10 patches. How-
ever, the balanced topologies (lattice, ER and community) were
found to be better in settings where the probability of persistence
is greater than 99.5%. In other cases when the persistence was
more jeopardized, the preferential attachment topologies were the
best. With n=100 patches, we have only observed the better
resistance of preferential attachment topologies and also their
crucial role in critical situations where persistence and extinction
had pretty much the same probability of occurring. However, we
were not able to obtain settings where the persistence probability
was greater for any of the balanced topologies than for the
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Fig. 4. (A) Probability of persistence and (B) mean number of occupied patches, in varying t generations (based on 20 replications of the network for a given topology) for
n=100, c=0.01, e=0.25 and d = 30%. COM: community network, ER: Erd6s-Rényi network, LAT: Lattice network, PA1: preferential attachment network with power 1, PA3:

preferential attachment with power 3.
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attachment with power 3.

preferential attachment topology, even though we have computed
it with Algorithms 2 and 3 for settings where the order of
magnitude of the persistence probability is 1— 107>,

Fig. 4A illustrates the crucial role of the topology in the chosen
setting. The preferential attachment topology with power 3 ensured
the persistence probability in 100 generations to be greater than
0.6 while the ER, lattice and community topologies have led to a
probability of persistence smaller than 0.05. Fig. 4B displays the
mean number of occupied patches conditionally to persistence. This
figure shows that the quasi-stationary distributions for the prefer-
ential attachment topologies had larger mean numbers of occupied
patches than the other three topologies. Indeed, the conditional
mean numbers were close to 15 for the preferential attachment
topologies while they were close to 5 for the three other topologies.
Since the number of occupied patches was too close to O in this
quasi-equilibrium, the system had a very low probability of relaxing
for a while in its quasi-stationary distribution.

Conclusion: From this study, we have determined that the role
of the topology is not always crucial. But in some settings, it has a
key impact on persistence probability and thus on the mean
number of occupied patches. Thanks to sharp computations of
the persistence probabilities, the differences between the topolo-
gies were also highlighted on the basis of rare events (rare
persistence or rare extinction). The preferential attachment topol-
ogy is generally more resistant according to this probability
especially when the persistence is jeopardized. Nevertheless,
concerning the occupancies, balanced topologies can perform a
little better even though they still have a smaller probability of
persistence than do the preferential attachment topologies. As an
example, Fig. 5A and B displays P(#Z190 > 0) and E(#Z100) in a
particular setting. Each of these two criteria may rank the settings
including the topology in different orders.

The community topology may be a little more sensitive to
extinction than are ER or lattice topologies but they are globally
equivalent for this dynamic model. Even if it is quite obvious, we
mention that it was noticed that the role of the topology is
enhanced when the density is higher, when c is greater and when
the number of patches is greater.

5. Application to seed diffusion among farmers: the case study
of the emergence of the Réseau Semences Paysannes

5.1. Context

Our first application of the sEC model was to describe an
emergent farmers' movement involved in seed exchange of crops
and vegetables in France. From the beginning of the 1990s in
Europe, new farmers' organisations have emerged with the aim of
sharing practices and seeds (Bocci and Chable, 2008). In a
preliminary study, Demeulenaere and Bonneuil identified the
global social dynamics in the context of the “Réseau Semences
Paysannes” (RSP), a French national farmers' organization created
in 2003 (Demeulenaere and Bonneuil, 2011). They described this

social movement highlighting emergent rules and giving a semi-
quantitative picture of the dynamics of this social organisation.
They focused their study on one of the RSP's subgroups specialized
in bread wheat (Triticim aestivum). Based on informants of the RSP,
they identified key actors. They performed 10 exhaustive inter-
views to collect data on which varieties were present in the fields
of the farmers and from whom they were obtained. Additional
information such as to whom farmers provided varieties was less
informed. They completed data collection with 8 additional semi-
directive interviews and 7 phone interviews. They collected 778
distinct records of seed exchange events among 160 actors
between 1970 and 2005. These seed exchanges involved 175
different varieties of bread wheat. After pooling all the information
collected between 1970 and 2005, an undirected seed circulation
network was drawn where an edge connects two farmers who
have carried out at least one seed diffusion event during this
period. Three connected components were identified: one giant
component (152 nodes, Fig. 6A) and two small ones (5 and 3 nodes
respectively, not shown). The average colonisation rate (c) was
estimated as the number of diffusion events per variety per farmer
per year. The number ranged over time from 0.03 to 0.66.

5.2. Question, approach and assumption

In the context of an emergent self-organized system, a crucial
question is to what extent do changes in social organization
impact the global ability of the system to maintain varieties?

Relying on our knowledge about RSP evolution, three network
topologies and two network sizes were simulated to represent
evolution of this social organisation, assuming that the observed seed
exchanges reveal a more complex and unobserved underlying social
networks. Five scenarios were defined to provide a framework for
studying the impact of such social change. They are described in the
next section. Then, the sEC model was used to represent the dynamic
process of seed circulation and extinction for each network topology. A
dedicated sensitivity analysis was designed to explore specific ranges
of e and c in a short time window. Working at this time scale was
motivated by the rapid change in social organization of such systems.
The probability of persistence and the expected number of occupied
patches was assessed for each scenario to compare the ability of the
system to maintain the variety circulating in the network.

Using the sEC model in the context of seed systems assumed that
farmers always wanted to recover the variety after losing it. In
addition, we assumed that all farmers had the same behaviour,
having the same ability: (1) to host a seed lot of a variety through the
seed diffusion process (uniform colonisation probability, ¢) and (2) to
lose it through a stochastic process of extinction (uniform extinction
probability, e). This assumption was made to highlight the position in
the network independently of individual characteristics.

5.3. Scenarios of evolution

Rapid evolution of the social organization can be qualitatively
depicted through three main phases. This description relies on a
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B

Fig. 6. (A) Summary network of bread wheat seed circulation among 152 farmers drawn from data collected based on 10 interviews covering a period from 1970 to 2005.
(B) Subgraph of the reliable seed circulation events from 1970 to 2005 based on the 10 interviews and used to estimate ps,. Interviewed people are in dark grey and

mentioned people in light grey.

participant observation study (Demeulenaere and Bonneuil, 2011)
during farmers' meetings between 2003 and 2012. During the first
phase, several dozen farmers were invited to participate in national
meetings. At the beginning, only a few farmers exchanged seed with
a limited knowledge of each other. For this reason, we assumed
random seed exchanges among farmers using an Erdés-Renyi net-
work (ER). After several meetings, a few farmers became more
popular and more central in seed diffusion. We modelled this stage
using a preferential attachment (PA) algorithm for designing the
network topology and accounting for a more important role of a few
farmers. Eventually, the number of farmers exchanging seeds highly
increased. At the same time, a change was observed from national
meetings to more local events thanks to the creation of local
associations involved in seed exchange (from O to 17 between
2003 and 2012). We considered the community model (COM)
following the stochastic block model as an appropriate network
model to mimic this new organization with most seed exchange at
the local scale (within groups) and rare events at the global scale
(long distance and among groups). Based on these observations, five
scenarios were defined for analysing the impact of change in social
organization on the ability of the self-organised system to maintain
varieties (Table 2):

® 1: random seed exchanges among few farmers (ER:50)

® 2: scale-free seed exchanges among few farmers (PA:50)

® 3: community-based seed exchanges among many farmers
(COM:500)

® 4: random seed exchanges among many farmers (ER:500)

® 5: scale-free seed exchanges among many farmers (PA:500)

First, we compared the results obtained for scenarios 1 and 2 to
study the evolution of the system capacity to maintain varieties
after a change in social organization in the context of small size
population. Then, scenario 3 was compared to scenarios 4 and 5 to
understand the consequence of a new social configuration in
maintaining crop diversity after an increase in the network size.

5.4. Sensitivity analysis
This additional sensitivity analysis is required to draw conclu-

sions about the scenarios in the context of the RSP study (different
number of patches, ranges of e and ¢ and a shorter time horizon).

Table 2
Description of the 5 scenarios.

Scenario  Comparison  MNyerex  Nedge topo e ratio e/c
la 1 50 263 ER {0.1;0.5;0.8} 1
1b 1 50 263 ER {0.1;0.5;0.8} 5
2a 1 50 263 PA {0.1;0.5;0.8} 1
2b 1 50 263 PA {0.1;0.5;0.8} 5
3a 2 500 2682 COM" {0.1;0.5;0.8} 1
3b 2 500 2682 COM® {0.1;0.5;0.8} 5
4a 2 500 2682 ER {0.1;0.5;0.8} 1
4b 2 500 2682 ER {0.1;0.5;0.8} 5
5a 2 500 2682 PA {0.1;0.5;0.8} 1
5b 2 500 2682 PA {0.1;0.5;0.8} 5

2 The COM model is defined for 10 groups of 50 farmers with a probability of
connecting people from the same community 10 times higher than the probability
of connecting two people from different communities.

To initialize the simulations, each actor owned only one and the
same variety. We defined three levels of event frequency to mimic
different global behaviours in terms of seed circulation and
maintenance: low frequency with e=0.1, intermediate frequency
with e=0.5 and high frequency with e=0.8. It was chosen to
investigate two variety statuses: popular and rare varieties. We
considered that rare varieties were less diffused with an e/c ratio
of 5 compared to 1 for the popular ones. We fitted the density of
the small network (n=50) to the density of the observed network
6B which gives ps, =0.21

For scenarios 3-5 with networks of size 500, density was
considered equal to psyy = Ps50/(500/50) = 0.021, considering that
people shared the same average degree whatever the size of the
network.

This framework allowed us to investigate the impact of topo-
logical properties of relational networks on the dynamic of the
system and more specifically on the probability of persistence of
varieties after 30 generations, P(#Z3y > 0), and the relative expec-
ted number of occupied patches after 30 generations, E(#Z3p). The
choice of 30 generations corresponded to the time scale of
observed seed exchange. In addition, we considered that such
social organization in the context of emergent social movements is
rapidly evolving without reaching a real equilibrium. Longer
simulations seemed to be less informative for understanding
properties of this self-organised system.
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5.5. Results

Small networks: scenarios 1 and 2: The change in network
topology was the main difference between scenarios 1 and 2. For
the popular varieties, (e/c = 1), PA only showed a lower probability
of persisting (P(#Z3p >0)) and a lower expected number of
occupied farms (E(#Z30)) for the higher values of e and ¢ compared
to ER (Table 3). For rare varieties, more susceptible to extinction
(e/c=5), an inversion between ER and PA was observed in terms
of ability to maintain the resource (P(#Z3q > 0)) for intermediate
values of e and c, before decreasing to zero for the highest values
(Table 3). This trend was confirmed by the expected number of
occupied patches.

In both cases (e/c=1 and e/c=5), the results are consistent
with Section 4: the balanced distribution of degree in ER networks
conferred a higher persistence probability and a higher relative
occupancy compared with a more hierarchical organization (PA) in
the context of safe situations. It is the heterogeneity of the degree
distribution that conferred more persistence in the context of
critical extinction.

Larger networks: scenarios 3, 4 and 5: They are characterized
by the larger number of actors. COM configuration was compared
to initial topologies: ER and PA networks. Simulation results
showed an equivalent P(#Z3¢ > 0) = 1, whatever the frequency of
event (low or high c and e) and the network topology (Table 4) for
popular varieties (e/c=1). Thus, with such parameter values it
was not likely that a variety disappeared whatever the topology.
Increasing the number of actors from 50 to 500 induced a
substantially higher expected number of occupied farms for ER
and COM topologies compared to PA (Table 4). The opposite
behavior was observed for rare varieties (e/c=5). We noticed
that ER and COM provided similar results whatever the
conditions.

5.6. Role of the social network topology on variety persistence and
recommendations

Role of the social network topology: Different factors influenced the
distribution and persistence of varieties. The number of farmers as
well as e and ¢ parameters were obviously the most important ones.

Table 3

Summary results of persistence probability (P(#Z3¢ > 0)) and expected number of
occupied farms after 30 generations (E(#Z30)) for 50 farmers, with ~: difference
lower than 2%, > : difference between 10-50%, > : difference higher than 50%.

Variety status e P(#Z30 > 0) E(#Z30)
e/c=1 0.1 ER=PA=1 ER~PA=44
0.5 ER=PA=1 ER>PA =44
0.8 ER=09>PA=0.7 ER=37>PA=25
e/c=5 0.1 ER=PA=1 PAZER =25
0.5 PA=0.8>ER=0.3 PA=13sER=3
0.8 PA=ER=0 PA=ER=0
Table 4

The increase in the number of participating farmers from the creation
of the RSP has substantially improved the probability of maintaining
rare and popular varieties within the system. The network topology
did not always have an incidence on persistence. When it was the
case, it was not always the same topology that outperformed the
others depending on the situation. Such behaviour depended on the
status of the variety under consideration. Popular varieties were
better maintained with ER or COM topologies because of the balanced
degree that avoids local extinctions, whereas rare varieties persisted
better with PA topology. In the case of rare varieties, PA topology with
few farmers as hubs allowed the variety to be quickly redistributed
through the network after local extinctions.

Relying on simulation results, we showed that the self-organized
trajectory of the RSP from small ER, then to small PA to large COM
improved the efficiency of the system at maintaining popular
varieties compared with rare varieties. It also shows that there is no
uniformly better social organization, that would both efficiently
spread popular varieties and preserve biodiversity, by maintaining
rare varieties. The COM network model seems to be a realistic
topology for large networks since local meetings with a subset of
the farmers are easier to organize. In this context, a community is
driven by the local meetings and farmers participating in the same
meeting are likely to be connected. In COM, very few farmers are
linked to farmers from other communities. Nevertheless, we observed
that it led to the same ability for persistence and occupancy as did the
ER network. These findings illustrated the independence between the
ability to maintain a variety and the connection within community
and across communities in the context of popular varieties. A detailed
sensitivity analysis of the COM parameters would allow one to assess
whether some COM configurations depart from ER behaviour. This
sensitivity analysis could be extended to the study of a mixture model
with COM and PA topologies. Such topologies would allow one to
model an even more realistic situation accounting for a persistently
higher degree of a few farmers within and across communities.

It was not possible to forecast the behaviour of the model using
only the e/c ratio due to complex interactions with the size of the
network and the type of topology.

Recommendations for future studies on seed systems: Sensitivity
analysis on the extinction-colonisation model confirmed that e
and c parameters were the most contributing factors to the ability
of the system to maintain a variety. Topological parameters like
the density of the network also appeared important in determin-
ing network function. Unfortunately, data that would permit us to
test the relative importance of these parameters have not yet been
collected. One of the reasons for this lack of data is that seed
systems are rapidly changing, often informal or even illegal
depending on the country legislation. Nevertheless, our work
showed that a good knowledge of event frequency (extinction
rate and seed exchange rate), of the status of the variety (rare or
popular) in addition to the density of the social network could
provide important clues to the health of the seed system. Thus,
particular attention has to be paid to these particular quantities in
future studies to strengthen our understanding of the sustain-
ability and health of seed systems.

Summary results of persistence probability (P(#Z3¢ > 0)) and expected number of occupied farms after 30 generations (E(#Z39)) for 500 farmers, with ~: difference lower
than 2%, >: difference between 2 and 10%, > : difference between 10 and 50%, >: difference higher than 50%.

e P(#Z30 > 0)

E(#Z30)

e/c= 0.1

PA=ER=COM =1

ER ~ COMzPA =425

0.5 PA=ER=COM =1 ER ~ COM2PA =427

0.8 PA~ER=COM =1 ER~COM =382>PA=314
e/c=5 0.1 PA=ER=COM =1 ER ~ COM ~ PA =249

0.5 ER~COM~PA=1 PA =193 » ER » COM = 40

0.8 PA=0.5>»ER=COM =0

PA=43>ER=COM =0
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6. Conclusion

This study investigated the role of the network topology in a
dynamic extinction colonisation model. The number of edges was the
most important feature of the network. The topology (distribution
of the edges) impact was less important but not negligible and
its impact depended on the other parameters (extinction rate e,
colonisation rate ¢ and number of edges). In Section 2, we have
highlighted the limits of describing a stochastic dynamic extinction
colonisation model only by the ratio e/c. As noticed in Section 4,
if the relevant parameters led to a probable extinction, networks
with high degree nodes (PA) were more resistant than networks with
balanced degrees (LAT, ER or COM). On the contrary, if persistence
was quite certain, more patches were occupied in balanced networks
than in the PA networks. The community structure (COM) and ER
showed similar properties with respect to persistence and occu-
pancy. These results obtained for small networks and after a short
time period were consistent with those obtained for large networks
after reaching a quasi-equilibrium state as shown by Gilarranz and
Bascompte (2012). Nevertheless, the necessity to properly estimate
the persistence probability and the expected occupancy in strongly
stochastic conditions was pointed out and a specific procedure was
provided. Franc (2004) and Peyrard et al. (2008) proposed more
accurate approximations of the sEC model to determine the beha-
viour of the system close to critical situations. They demonstrated the
importance of particular geometrical features of the network such as
the clustering coefficient and the square clustering coefficient for
describing the impact of the network in the evolution of the system.
Further studies should be conducted to determine the role of these
features in a limited network size.

As a natural extension of the present work, it would be interesting
to consider several varieties at a time. Indeed, if the varieties are
independent, the present results extend straightforwardly. For exam-
ple, the probability for all varieties to be extinct at a given time T is
simply [[s = 1..sPr(Z; = 0) where Z; stands for the number of farms
occupied by variety s at time T and S for the number of varieties.
More interestingly, interactions among varieties should be accounted
for. A specific model would need to be defined to model joint
diffusion and extinction probabilities. Then, one would need to study
the joint path of all varieties so the resulting Markov chain would
have 2™ states, therefore the exact approach could only apply to very
limited numbers of both farms and varieties.

Such work will contribute to future discussions with farmer
organisations and community seed systems, particularly on the way
to monitor popular and rare varieties circulating in the system. This
study improved our understanding of the role of the social
organization in maintaining crop diversity in such emergent self-
organised systems.
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