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ABSTRACT

We consider fixed recombinant inbred lines (RILs) derived either by selfing or by full-sib mating; when
applicable, we also consider intermated recombinant inbreds (IRIs). First, we show that the usual estimate
of recombination fraction based on RIL data is biased, and we provide an estimate where the major part of
that bias is removed. Second, we derive simple formulas to compute the frequencies of genotypes at three
loci in RILs. We describe the nonindependence of multiple recombinations arising in RIL recombination
data even though there may be no interference in each meiosis. Finally, we give formulas for interference
tests, gene mapping, or QTL detection in RIL populations.

RECOMBINANT inbred lines (RILs) can be derived
either by repeated selfing or by repeated brother–

sister mating of the progeny of an initial F1 cross be-
tween two inbred lines. Such populations constitute a
material of choice for geneticists and breeders. First of
all, the genetic material is fixed if the number of selfing
or brother–sister mating generations is large enough;
indeed, the chance that any given locus is heterozygous
decreases very fast with the number of generations of
inbreeding, and in practice 7–10 generations are suffi-
cient. With such fixed genotypes (ignoring mutations),
a line can bemultiplied while staying identical, allowing
measurements in different conditions virtually an in-
finite number of times. Second, because of the accu-
mulation of crossovers appearing at each meiosis with
every generation, the proportion of recombinant zy-
gotes in RILs (i.e., the probability that two linked loci
have different parental alleles) is higher than what it
would be in the F2. The main disadvantage of RILs
is that they require long and sometimes costly pro-
cedures to develop. However, this has been tackled re-
cently by large community efforts, for example, inmouse
(Threadgill et al. 2002; Complex Trait Consortium
2004) and inmaize (Maize Mapping Project, http://www.
maizemap.org/). Concomitantly, the analysis of RIL
data has also experienced a renewal of interest from the
theoretical standpoint (e.g., Broman 2005; Teuscher
et al. 2005). This article wishes to improve the statistical
description of such data.

Hereafter and classically, the recombination rate per
meiosis is denoted r, while the proportion of recombi-
nant zygotes in RILs is denoted R. The relationship be-
tween r and R for two loci in fixed RIL populations
derived either by self-fertilization or by full-sibmatings is
well known since the often-cited work of Haldane and
Waddington (1931):

R ðSSDÞ ¼ 2r

11 2r
for selfing by single-seed descent ðSSDÞ

ð1aÞ
or

R ðSIBÞ ¼ 4r

11 6r
for full-sib mating ðSIBÞ: ð1bÞ

Recently, these formulas have been generalized to cope
with more complex inbreeding designs (Winkler et al.
2003; Zou et al. 2005); for example, Winkler et al.
(2003) extended these formulas to intermated recombi-
nant inbred (IRI) lines having t generations of random
mating prior to selfing. In a large (infinite) population,
they showed, for instance, that SSD leads to

R ðIRIÞ ¼ 1

2
1� 1� 2r

11 2r
ð1� r Þt

� �
ð2Þ

and an analogous equation in the case of sib mating.
Some of the work presented here applies to those cases
too.
The formulas of Haldane and Waddington (Equa-

tions 1) have been the basis for linkage analysis in RILs
(for genetic mapping and QTL detection). In particu-
lar, to our knowledge, they are the only core formulas
used by geneticmapping andQTL detection software to
accommodate data from recombinant inbred lines; this
is the case not only for the oldest and still most used
software, Mapmaker (Lander andGreen 1987; Lander
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et al. 1987), but also for more recent programs (e.g.,
Chabrier et al. 2000; Manly et al. 2001; Wang et al.
2003). In those data analysis programs, RIL data are
handled as if they were backcross data, i.e., produced by
a single meiosis, except that r is replaced by R to partly
account for multiple-generation effects in RILs.

Our starting point is the fact that the two-locus Equa-
tions 1 are insufficient to fully describe recombinations
in RIL data; this fact has sometimes gone unnoticed or
has been simply neglected because it complicates the
data analysis. Indeed, through the accumulation of
meioses in RIL, with either selfing or full-sib mating,
the recombinations in two marker pairs are no longer
independent events, even if there is no interference in
recombinations during eachmeiosis. As a consequence,
the computation of genotype frequencies at three or
more loci (multipoint analysis), which enters into ge-
netic mapping (e.g., for gene ordering) and into QTL
detection (e.g., interval mapping), is more complicated
with RIL data (i.e., as a function of theR’s) than it is in F2
or backcross populations (as a function of the r’s).
Another problem arises from the nonlinearity of Equa-
tions 1: because of that, their direct use does not provide
an unbiased estimate of r.

Here, we provide new formulas that describe the
statistics of RIL data. The presentation is organized as
follows. First we treat the bias in the estimate of r in
terms of the observed value of R. Second, we derive the
formulas giving the three-locus genotype frequencies in
terms of the R’s. Finally, we show how these frequencies
can be used in statistical inference, namely for gene
mapping, to test for interference or for QTL detection
by interval mapping in RILs.

GENERAL FRAMEWORK

Here, we adhere to clear and consistent definitions of
recombination rate andmap distance, as was the case in
the original literature on linkage (e.g., Haldane 1919;
Haldane and Waddington 1931), and avoid the con-
fusion in terminology that has arisen in more recent
literature. Inparticular, weban the termsapparent recom-
bination rate, apparent interference, map expansion,
and equivalent distance. The recombination fraction r
is defined as the expected proportion of recombinant
gametes following exactly one generation of meiosis.
Map distance is defined as the mean number of cross-
ings over per meiosis in the interval of interest. There is
only one map, and the size of the genetic map does not
depend on themating system or number of generations
of recombination (if the map was dependent onmating
system then we would need different maps for different
systems). From an estimation standpoint, we estimate
map distance from an estimated recombination frac-
tion. Interference is used to describe the fact that there
is a biological limitation on crossing over during one
meiosis, such that crossovers are not independent. As we

show, there is no pseudocrossing over occurring in a
single generation that results in anything equivalent to
multiple generations of recombinations. Even if there
is no interference during meiosis, the fractions of re-
combinant zygotes in RILs (which involve multiple gen-
erations of meiosis) are not independent from interval
to interval. These clarifications were greatly inspired
by the comments of one anonymous referee (personal
communication).

For completeness, we recall the principle behind RILs.
Starting with F1 individuals obtained from a crossing of
two homozygous parents, one generates offspring either
by selfing (SSD in plants) or by full-sib mating if selfing
is not realizable. These offspring will fix (become ho-
mozygous) at all the loci after ‘‘enough’’ generations.
One can also consider IRI lines: these differ from RILs
in that the F2 population is first randomly mated for
t generations, and only then does one perform the in-
breeding; this intermediate phase of panmixia has the
effect of reducing the linkage disequilibrium among the
loci. Most of this article presents results in the frame-
work of RILs, but the generalizations to IRI lines are
conceptually straightforward.

For all our work, we assume that we are dealing with
diploidorganisms. Theprobability of recombination be-
tween loci 1 and 2 during one meiosis is r12. As is usually
assumed, this probability is taken to be independent of
the genotype and thus is the same across the different
generations of the inbreeding.

Consider now the genotype frequencies in fixed lines
derived from (homozygous) parents. Since we are con-
sidering only fixed lines, for notational simplicity and
without loss of generality, we denote the genotypes us-
ing only one allele per locus, that is:

AB[AB=AB Ab[Ab=Ab ð3Þ
aB[ aB=aB ab[ ab=ab: ð4Þ

For two loci, these genotypes are of the form ‘‘recom-
binant’’ (Ab or aB) and ‘‘nonrecombinant’’ (AB or ab).
As usual, one defines R12 to be the probability of pro-
ducing a recombinant zygote. R12 is thus also the ex-
pected fraction of such lines. The definitions of r12 and
R12 are always the same regardless of the mating system
or design. However, the dependence of R on r does vary
with the mating scheme (see the examples in Equations
1 and 2 above). Hence, whenever possible, we express
our results directly in terms of R.

When alleles are fixed (large enough number of gen-
erations of inbreeding), the four two-locus genotypic
frequencies are determined completely by the (single) re-
combination fraction R12. We use the notation whereby
g(0) is the total frequency of genotypes with no recom-
bination (AB/AB or ab/ab), while g(1) is that of those
with recombination (aB/aB or Ab/Ab). In the absence of
anomalous segregation, the different genotypes in a given
category are equiprobable. Obviously, g(0)1 g(1)¼ 1;
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since R12 ¼ g(1), all genotype frequencies are given in
terms of g(1) ¼ R12 and g(0) ¼ (1 � R12).

TWO-POINT STATISTICS

Since this whole section concerns only two loci, we
drop for now the subscripts 12 on r and R to lighten the
notation. Now in practice only a finite numberN of lines
are produced, and from these one must get estimators
of the previously defined parameters, namely R ¼ R12

and r ¼ r12. The estimator of R is just the fraction R̂ of
recombinant zygotes observed among the N lines, but
for estimating r we have several possibilities.

Bias reduction in the case of RILs by SSD: First we
consider the case of a sample of N fixed recombinant
inbred lines derived independently by single-seed de-
scent from the starting F1. The number of times each
genotype arises is stochastic; we are principally inter-
ested in the number m of recombinant lines; and m is a
random variable, of distribution

P ½m� ¼ N
m

� �
Rmð1� RÞN�m : ð5Þ

Maximization over R of the likelihood of the given data
leads to the obvious estimator R̂ :

R̂ ¼ m

N
: ð6Þ

As expected, this is the number of recombinant lines
divided by the total number of lines.

An estimator of a quantity is unbiased if the expecta-
tion of that estimator equals the exact value of the
quantity. The starting point of our discussion here is
that although R̂ is unbiased, this is not the case for the
‘‘usual’’ estimator of r (e.g., in Mapmaker, see Lander
and Green 1987; Lander et al. 1987). This usual
estimator, obtained by plugging R̂ instead of R into
the Haldane–Waddington equation (Equations 1) and
solving for r, has a bias of order 1/N; the source of this
bias is the fact that the relation between r and R is
nonlinear. Let us look at this more carefully.

The expectation of R̂ can be computed, using the
binomial distribution of m; one obtains

E ½R̂ � ¼ R : ð7Þ

This shows that R̂ is an unbiased estimator of R.
We are interested in estimating r; inverting (1a) gives

r ¼ R

2ð1� RÞ: ð8Þ

The simplest and often used estimator of r is r* ¼
R̂=ð2ð1� R̂ÞÞ; however, this estimator turns out to be
biased. An intuitive explanation of the origin of this bias
is as follows. Assume that r and R are the true values
linked by Equation 1a. Because R̂ is unbiased, it can be

thought of as the sum of the true value plus a random
noise of zero mean: R̂ ¼ R 1 eð0;sÞ. However, because
the relation (1a) is not linear, it is easy to see (e.g.,
graphically) that using (1a) to project the distribution
of noisy R̂ -values on the r-axis leads to a distribution that
is not centered on the true value r. Hence E[r*] 6¼ r
(indeed E[r*] . r) so r* is a biased estimator of r.
To quantify this mathematically, first rewrite the es-

timator as

r* ¼ R̂

2ð1� R̂Þ
¼ �1

2
1

1

2ð1� R̂Þ
ð9Þ

and then perform the Taylor series expansion in
eR [ ðR̂ � RÞ=ð1� RÞ:

r* ¼ R 1 eR 1 e2R 1 e3R 1 � � �
2ð1� RÞ : ð10Þ

Now we take expected values: using the fact that R̂ is
unbiased, we have

E ½r*� ¼ r 1
E ½ðR̂ � RÞ2�
2ð1� RÞ3 1 � � � ; ð11Þ

where the higher-order terms are associated with higher-
order moments of ðR̂ � RÞ. Although this formula
assumes that one knows R, it is nevertheless useful.
First, to this order in the Taylor expansion, we can
replace 1/(1 � R) by 1=ð1� R̂Þ. Second, although the
expectation E ½ðR̂ � RÞ2� depends implicitly onR, we can
estimate this variance assuming that the value of R ¼ R̂ :
the result is R̂ð1� R̂Þ=N . This approach then leads us to
a modified estimate for r in which most of the bias has
been removed:

r̂ ¼ R̂

2ð1� R̂Þ
� R̂ð1� R̂Þ
2N ð1� R̂Þ3

¼ r* 1� 1

ðN � mÞ

� �

¼ mðN � m � 1Þ
2ðN � mÞ2 : ð12Þ

Although this new estimator is still biased, the re-
maining bias is now only of order 1/N 2. It is possible
to obtain higher-order corrections, either by keeping
more terms in the Taylor expansion or by appealing to
strategies from inverse problem methods (Bako and
Daboczi 2002).
Bias reduction in the case of RILs by SIB: The same

kind of analysis can be applied to the case of recom-
binant inbred lines derived by full-sib matings. This
modifies the relation between r and R (cf. Equation 1b);
solving Equation 1b for r leads to

r ¼ R

4� 6R
: ð13Þ
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As in the previous discussion, the obvious estimate of
R is given by (6) and is unbiased. But, plugging that
estimate into the formula for r leads to an estimate
r* ¼ R̂=ð4� 6R̂Þ with a bias of order 1/N for N lines. To
remove the leading bias, one proceeds just as described
before; the derivation is straightforward so we simply
give the result here:

r̂ ¼ R̂

4� 6R̂
� 24R̂ð1� R̂Þ
N ð4� 6R̂Þ3

¼ r* 1� 6ðN � mÞ
ð2N � 3mÞ2

� �

¼ m

4N � 6m
1� 6ðN � mÞ

ð2N � 3mÞ2
� �

: ð14Þ

General case and application to IRI lines: So far
we have considered recombinant inbred lines only but
more general designs such as IRI lines can also be
treated. The definitions of R̂ and R are the same as be-
fore ( just use the fraction of recombinant zygotes) and
again R̂ is unbiased. From these quantities, we want to
estimate r. Themain difficulty comes from the fact that r
is not known analytically as a function of R: one has to
resort to a numerical determination of r*. For instance,
in IRI lines, (2) cannot be inverted to give a closed-form
expression for r ¼ f(R); instead, r will be obtained
numerically to arbitrary accuracy. A priori, this difficulty
makes computing the bias problematic; nevertheless, it
can be done, albeit at the cost of long formulas.

Rather than consider the particular case of (2), let us
treat the general case of an arbitrary relation between R
and r, represented as r ¼ f(R). The straightforward esti-
mator for r is r* ¼ f ðR̂Þ. Unless f is linear, this naive
estimator of r is biased. As in the case treated before, the
bias can be computed formally from the Taylor series
expansion:

E ½ f ðR̂Þ� ¼ f ðRÞ1 f 9ðRÞ3E ½R̂ � R �
1 1

2 f $ðRÞ3E ½ðR̂ � RÞ2�1 � � � : ð15Þ

Since R̂ is unbiased, the expectation E ½R̂ � R � vanishes
and the leading bias in the estimator for r comes from
the variance of R̂ . As discussed in the previous section,
although we do not know this variance exactly, its value
to leading order in 1/N is R̂ð1� R̂Þ=N . Similarly, we can
replace f(R) by f ðR̂Þ to this order, so that our corrected
estimator is

r̂ ¼ f ðR̂Þ � f $ðR̂ÞR̂ð1� R̂Þ
2N

; ð16Þ

where f $ðR̂Þ is the second derivative of f evaluated at the
point R̂ .

A technical difficulty arises when applying this for-
mula: if f is known only through its inverse f �1 (as is the
case with IRI), the computation of the f$ term has to be

indirect. Rather than tabulating f (numerically deter-
mining it at a series of points) and then taking its second
derivative that numerically introduces discretization er-
rors, we observe that f$ can be expressed in terms of the
derivatives of f �1. The advantage of such an approach is
that one circumvents any root solving problems. The
mathematics are relatively simple and start with the
relation between the derivatives,

f 9 ¼ 1=g 9; where g [ f �1 ð17Þ

is introduced to lighten the notation. Differentiating
once more leads to

f $ ¼ � g$

½g 9�2: ð18Þ

This thus leads to a simple computation of r̂ once the
term r* has been extracted. The bias of r̂ is again of
order 1/N 2.

The case of IRI lines can be treated directly with this
approach. First, the naive estimator of r has to be
obtained by solving (2) numerically; let r* be the value
so that r* ¼ f ðR̂Þ; this gives the first term on the right-
hand side of (16). Second, using (18), one computes f$
via g and its derivatives (which are known explicitly); this
gives the second term on the right-hand side of (16).
The final result is a modified estimator in which the
O(1/N) bias has been removed.

THREE-POINT STATISTICS

Three-locus genotype frequencies: We consider now
fixed RIL or IRI lines with three loci. There are eight
genotypes denoted ABC [ ABC/ABC, aBc [ aBc/aBc,
etc., in the obvious fashion. In the absence of anomalous
segregation, the eight genotype frequencies depend only
on whether there are or are not recombinations in the
intervals 1–2 and/or 2–3, so the problem reduces to
finding four quantities. Let g(i, j) denote the probability
of obtaining genotypes with i (0 or 1) recombinations
between loci 1 and 2 and j recombinations between loci
2 and 3. We thus have

g ð0; 0Þ ¼ PðABCÞ1PðabcÞ g ð0; 1Þ ¼ PðABcÞ1PðabCÞ
g ð1; 0Þ ¼ PðAbcÞ1 PðaBCÞ g ð1; 1Þ ¼ PðAbCÞ1 PðaBcÞ:

ð19Þ

Since

g ð0; 0Þ1 g ð1; 0Þ1 g ð0; 1Þ1 g ð1; 1Þ ¼ 1 ð20Þ

the knowledge of the three recombination rates R12,
R23, and R13,

R12 ¼ g ð1; 0Þ1 g ð1; 1Þ
R23 ¼ g ð0; 1Þ1 g ð1; 1Þ
R13 ¼ g ð0; 1Þ1 g ð1; 0Þ; ð21Þ
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suffices to determine all genotype frequencies by solv-
ing the system of linear equations formed by (20) and
(21). This gives

PðABCÞ ¼ PðabcÞ ¼ 1
4ð2� R12 � R23 � R13Þ

PðABcÞ ¼ PðabCÞ ¼ 1
4ð�R12 1R23 1R13Þ

PðAbcÞ ¼ PðaBCÞ ¼ 1
4ðR12 � R23 1R13Þ

PðAbCÞ ¼ PðaBcÞ ¼ 1
4ðR12 1R23 � R13Þ: ð22Þ

These equations can be summarized via the general
formula

g ði; jÞ ¼ 1
4½11a1;ið1� 2R12Þ1a2;jð1� 2R23Þ

1a1;ia2;jð1� 2R13Þ� ð23Þ

with

a1;i ¼ ð1� 2iÞ

¼
11 if there is no recombination between loci 1 and 2

�1 if there is a recombination between loci 1 and 2

�

ð24Þ

and the same for a2,j, locus 2, and locus 3, respectively.
An intuitive demonstration of (22) can be obtained

using Table 1 and Figure 1 as follows. Because we assume
that the three loci 1–2–3 are linked on the genetic map,
there is a strict dependency of the recombination events
in the interval 1–3 on the recombination events in 1–2
and 2–3. These dependencies are shown in Table 1.
Then, in the Venn diagram in Figure 1, the setsR12 and
R23, corresponding to recombination events in 1–2 and
2–3, respectively, are sufficient to divide the space into
four mutually exclusive subsets, each corresponding to
one frequency g(i, j) (also indicated in the figure). From
basic set theory, R12 1 R23 � R13 ¼ 2g(1, 1); similarly,
g(1, 0)¼ R12 � g(1, 1), etc., from which one obtains the
relations (22). It is nice to note that the coefficients of
the R’s in (22) are exactly the signs given in Table 1,
where (1) corresponds to recombination and (�) to no
recombination.

Although genotype frequencies can as well be ex-
pressed in terms of the r’s, there are three nice features
of Equations 22 that come directly from the fact that we

express genotype frequencies in terms of theR’s, as long
as each R is defined as in (6): (i) Equations 22 hold for
any mating system (RIL by SSD, RIL by full-sib matings,
IRI, . . .); (ii) Equations 22 make no assumption about
interference in each meiosis, and hence they hold
whether or not there is interference; in fact, if there is
interference, its effects are already incorporated into
the R’s; and (iii) Equations 22 are compact and general
for any values R12 6¼ R23, while the same relations in
terms of the r’s are more complex so that only the
restricted case r12 ¼ r23 has been published in extenso so
far (e.g., Broman 2005).
Note that since the three pairwise recombination

fractions determine all genotype frequencies, necessar-
ily the probability of double-recombinant zygotes is
always given in terms of the probabilities of the single-
recombinant zygotes.
Distances and mapping function: Relation between re-

combination rates: Now we can ask what the relation is
between R12, R23, and R13. This will indeed depend on
possible interference between the recombinations. As-
suming here that there is no interference in the cross-
over events during meiosis, we have

r13 ¼ r12 1 r23 � 2r12r23 ð25Þ

or

ð1� 2r13Þ ¼ ð1� 2r12Þ ð1� 2r23Þ: ð26Þ

For RIL with SSD, one has R ¼ 2r/(1 1 2r); expressing
(26) in terms of the R’s then gives the relation

1� 2R13

1� R13

� �
¼ 1� 2R12

1� R12

� �
1� 2R23

1� R23

� �
: ð27Þ

This can be transformed into explicit relations for R13,

1� 2R13 ¼
ð1� 2R12Þ ð1� 2R23Þ

1� 2R12R23
ð28Þ

Figure 1.—Venn diagram showing the different recombi-
nation events and the corresponding genotype frequencies.

TABLE 1

Allowed joint recombination events between three loci

Recombination in interval

1–2 2–3 1–3

No (�) No (�) No (�)
No (�) Yes (1) Yes (1)
Yes (1) No (�) Yes (1)
Yes (1) Yes (1) No (�)
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or

1� R13 ¼
ð1� R12Þ ð1� R23Þ

1� 2R12R23
; ð29Þ

giving

R13 ¼
R12 1R23 � 3R12R23

1� 2R12R23
: ð30Þ

In the case of sib mating, given the relation R ¼ 4r/
(1 1 6r), the assumption of noninterference gives

2� 4R13

2� 3R13

� �
¼ 2� 4R12

2� 3R12

� �
2� 4R23

2� 3R23

� �
: ð31Þ

Solving for R13 leads to

1� 2R13 ¼
ð1� 2R12Þ ð1� 2R23Þ

1� 3R12R23
; ð32Þ

which generalizes very elegantly the SSD formula; this
can also be put into the form

R13 ¼
2R12 1 2R23 � 7R12R23

2� 6R12R23
: ð33Þ

Unfortunately, within IRI lines, the relation between
R and r cannot be solved explicitly for r if t. 3; because
of this, we have no simple relations between theR’s, be it
for SSD or for sib mating.

Additivity of distances: Both RIL and IRI lines have the
effect of increasing the fraction of recombinant zygotes
for the simple reason that there are multiple meioses.
Many authors have interpreted this as a ‘‘map expan-
sion’’ phenomenon (see Teuscher et al. 2005 for a
recent example). However, such a term is misleading:
there is a single map, and using the R’s instead of the r’s
does not lead to a new map. The appropriate interpre-
tation is that the N RIL or IRI lines provide higher map
resolution than N separate meioses.

It seems useful to clarify once and for all these points.
Recall that the distance between two loci is defined (in
morgans) to be the mean number of crossings over
arising in that interval during a single meiosis (such
distances are then necessarily additive). Generally one
does not know the number of crossings over but only its
parity, an odd (resp. even) number giving (resp. not
giving) a recombination between the two loci under
consideration. This difficulty then pushes one to infer
distances from recombination rates. In the case of no
interference in each meiosis, we can make everything
explicit. In that case, the distance dH is given in terms of
Haldane’s map function:

dH ¼ �1
2 lnð1� 2r Þ: ð34Þ

Naturally such distances are additive. However, when
simply plugging R into (34) one does not get a map
function. Namely, the quantity

d* ¼ �1
2 lnð1� 2RÞ ð35Þ

is not additive: for three loci 1–2–3 we have

d13* 6¼ d12*1 d23* ð36Þ

as can be checked from (28) or (32).
To compute genetic map distances from the R-values,

write (34) in terms of R, which gives

d ¼ �1

2
ln

1� 2R

1� R

� �
for selfing by SSD ð37aÞ

or

d ¼ �1

2
ln

2� 4R

2� 3R

� �
for SIB: ð37bÞ

Distances can thus be estimated either at the single-
meiosis level (via r) or at the RIL level (via R).

Testing locus order in RIL: One can use the three-locus
frequencies in (22) for ordering three loci in mapping
problems. The problem is to find the most likely or-
dering of the loci given the recombination rates. We
focus on RIL and IRI lines, working directly with R-
values. Consider that a finite numberN of fixed lines are
produced; we denote by ni,j the number of lines with i
recombinations in the first interval and j in the second.
Given the property of independence of the lines, the
joint probability of having generated n0,0, n0,1, n1,0, and
n1,1 such lines is

Pðfni;jgÞ ¼
N !

n0;0!n0;1!n1;0!n1;1!

3 g ð0; 0Þn0;0g ð0; 1Þn0;1g ð1; 0Þn1;0g ð1; 1Þn1;1:
ð38Þ

This probability is, via the g’s, a function of the R’s, but
note that a choice has been imposed implicitly for the
‘‘middle’’ locus. There are three possibilities for this
middle locus, and for each such choice, one is to find its
likelihood.

In what follows we assume that there is no interfer-
ence. The maximum-likelihood approach is to maxi-
mize Pðfni;jgÞ over all choices of the R’s; this provides
estimates of the R’s and avoids referring to an a priori
distribution. Since we assume there is no interference,
we can eliminate R13 by reexpressing it in terms of R12

and R23. This step uses explicitly the SSD or sib-mating
assumption ½cf. relations (30) and (33)�. Performing it is
straightforward for RI lines but not for IRI lines; indeed
R13 is not known analytically in that case and so onemust
resort to doing the elimination numerically. For that,
one computes r12 and r23, then r13 ¼ r12 1 r23 � 2r12r23,
and finally R13 via the explicit IRI formula.

Maximizing the likelihood over R12 and R23 requires
searching in a two-parameter space with an allowed
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domain 0 # R # 0.5. This search can be done nu-
merically. Performing this search for the three possible
orderings then leads to the order with the largest maxi-
mum likelihood.

Note that the parameter settings R̂12 and R̂23 that
maximize the likelihood in general will be different
from the values estimated from two-locus data only as
additional information has been included. This is not
the case when one single meiosis is involved (e.g., back-
cross) in which case the two and three-locus estimates of
the recombination fractions are the same. This property
can be traced back to the fact that the recombinations in
each interval are independent in one meiosis. However,
this is not the case in RILs and so it is mathematically
more justified to infer locus order by simultaneously
using all the three-locus data. Amore naivemethod con-
sists of using first the data for each interval separately to
extract the R’s and then using this in (38) to get a like-
lihood for each of the orderings. We implemented the
algorithms for these two approaches but in practice we
found that they lead to essentially identical results.

Interference inRIL:Nonindependence of recombinations:
Equations 30 and 33 were derived assuming no in-
terference at each meiosis. Nevertheless, it is clear that
the relation between the R’s is not the same as the one
between the r’s (see Equation 25), namely

R13 6¼ R12 1R23 � 2R12R23: ð39Þ

Hence, recombinations in different intervals are not
independent events in RILs, even if there is no inter-
ference at each meiosis. We quantify here the amount
of nonindependence in RIL data (when there is no
interference in each meiosis) by the four ratios:

rð1; 1Þ ¼ g ð1; 1Þ
R12R23

$ 1 rð0; 0Þ ¼ g ð0; 0Þ
ð1� R12Þð1� R23Þ

$ 1

rð1; 0Þ ¼ g ð1; 0Þ
R12ð1� R23Þ

# 1 rð0; 1Þ ¼ g ð0; 1Þ
ð1� R12ÞR23

# 1:

ð40Þ

Hence, compared to what would be obtained if geno-
type frequencies in RILs could be computed as if they
were produced by a single pseudomeiosis (where r would
be replaced by R), we see that there are more double-
recombinant zygotes and nonrecombinant zygotes and
fewer single-recombinant zygotes. Furthermore, the rel-
ative excess of nonrecombinant zygotes is small, much
smaller than the relative excess of double-recombinant
zygotes.

To illustrate this point, we show in Figure 2 these
ratios when R12 ¼ R23 ¼ R as a function of R. The devia-
tions from independence for double-recombinant zy-
gotes is highest when R is small, and there r(1, 1) tends
to 1.5 (hence the frequency of double-recombinant
zygotes is as much as 50% higher than that given by the
product R12 R23 for small R) while at large R the RIL
recombinations become independent as expected. In

Figure 2, we also show the two other ratios related to
nonindependence for nonrecombinant and for single-
recombinant zygotes; note that the former departs very
little from 1.
Test of true interference: It can be of interest to consider

the consequences of true interference at eachmeiosis so
let us see how to test this directly from RIL data using
Equations 22, applying standard linkage analysis meth-
ods developed for other crosses (Ott 1999, pp. 124–
128). Generalizing the test on the basis of the coefficient
of coincidence in individual meioses (Muller 1916),
we consider the ratio

I ðRILÞ ¼ 1� observed frequency of double-recombinant zygotes

frequency of double-recombinant zygotes if no interference
;

ð41Þ
where ‘‘no interference’’ is the result when crossing-over
events are independent; this corresponds to taking R13

as given in (30) when computing g(1, 1). A simple
calculation in SSD then gives

I ðRILÞ ¼ 1� ð1� 2R12R23ÞðR12 1R23 � R13Þ
R12R23ð3� 2R12 � 2R23Þ

: ð42Þ

In analogy with Strickberger (1985), interference is
quantified here by I(RIL), so that absence of interference
gives I(RIL) ¼ 0. Note that in general the tests of inter-
ference based on such double-recombinant zygote fre-
quencies have a low power (Elandt-Johnson 1971; Ott

1999).
It is also possible to consider validating a particular

model of interference. Then one should consider the
ratio of actual recombinant zygote frequencies to theo-
retical ones, using for the ‘‘theory’’ themodel’s value for
R13 in terms of R12 and R23.

Figure 2.—Ratios of true three-locus genotype frequen-
cies to those obtained neglecting recombination correlations,
in the case R12 ¼ R23 ¼ R (cf. Equations 40). The largest devia-
tion from1is for thedouble-recombinant zygotes [r(1, 1)], and
the smallest is for the nonrecombinant zygotes [r(0, 0)].
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Conditional genotype frequencies: The last applica-
tion of Equations 22 that we provide is the computation
of the conditional probability of the (unknown) geno-
type at one of the three loci, given the (known) fre-
quencies of genotypes at the two other loci. This is
relevant in particular for the two cases below. Note that
we assume no interference here.

QTL detection: In QTL detection by interval mapping,
one tests for the effect of a putative locus Q/q in the
interval between two markers M1 and M2. Setting M1 [

A, Q [ B, and M2 [ C to keep to our notations, the
relevant conditional probabilities to perform QTL de-
tection in RILs are

Prðb jACÞ ¼ 1� PrðB jACÞ ¼ PðAbCÞ
1=2ð1� R13Þ

¼ R12R23ð3� 2R12 � 2R23Þ
2ð1� R12Þð1� R23Þ

Prðb jAcÞ ¼ 1� PrðB jAcÞ ¼ PðAbcÞ
1=2R13

¼ 2R23 � R12R23ð3� 2R12 1 2R23Þ
2R23 1R12ð2� 6R23Þ

: ð43Þ

Hence, considering that the QTL has an additive effect
a, so that QTL genotypic values are mQQ ¼ m 1 a and
mqq ¼ m � a, the mean values for the flanking markers
genotypes are

mM1M1M2M2
¼ m1a

ð1� R1 � R2Þð1� 2R1R2Þ
ð1� R1Þð1� R2Þ

ð44Þ

mM1M1m2m2
¼ m� a

ðR1 � R2Þð1� 2R1R2Þ
R1 1R2 � 3R1R2

; ð45Þ

where R1 is the recombination rate between M1 and
Q, and R2 is that between Q and M2 (R12 and R23,
respectively, in our notations). The means for the two
other marker genotype classes are obtained by symme-
try, so finally, the ‘‘marker effect’’ that can be estimated by
linear model approaches [1=2ðmM1M1M2M2

� mm1m1m2m2
Þ]

is the second term of (44). Numerical evaluation of this
quantity shows that approximating genotype frequen-
cies in RILs ‘‘as if’’ they were produced by a single
pseudomeiosis where r would be simply replaced by R
leads to an overestimation of QTL effects of �2% as
soon as M1 and M2 are .20 cM apart.

Missing data in genetic mapping: Our second example
is the treatment of missing data in genetic mapping
software. When genotyping data are missing for some
individuals at some markers, rather than simply drop-
ping the individual/marker, one may replace the
missing data by their expected values given the available
data at other markers/individuals, using an appropriate
algorithm (e.g., Lander and Green 1987). In addition
to the above conditional probabilities for the middle
locus, the following probabilities for the ‘‘external’’
locus are also relevant:

Prðc jABÞ ¼ 1� PrðC jABÞ ¼ PðABcÞ
1=2ð1� R12Þ

¼ 2� R12R23ð3� 2R12 1 2R23Þ
2ð1� R12Þð1� 2R12R23Þ

PrðC jAbÞ ¼ 1� Prðc jAbÞ ¼ PðAbCÞ
1=2R12

¼ R23ð3� 2R12 � 2R23Þ
ð2� 4R12R23Þ

: ð46Þ

CONCLUSIONS

Wehave reconsidered two- and three-locus statistics in
RILs and extensions thereof, assuming all alleles to be
fixed. From the two-locus recombination fraction, one
can estimate the recombination rate per meiosis; re-
moving most of the bias in this estimate can be done
quite cheaply and effectively. Interestingly, the two-locus
genotype frequencies completely determine the three-
locus ones, independently of the design or interference
model. When recombinations at the level of individual
meioses are independent, we provided the formulas re-
lating the different recombination fractions. Furthermore,
we exhibited the nonindependence of recombinations
in such lines. Our three-locus formulas can be used for
more reliable data analysis of inbred lines, for instance,
for tests such as interference detection or QTL interval
mapping. Extensions of such formulas to four loci would
be of interest; unfortunately, the two-locus frequencies
do not determine these uniquely, because line design
and interference must be taken into account.

We thank two anonymous referees for the amount of time they put
into very detailed, constructive, and helpful reviews of an earlier ver-
sion of this manuscript. This work was done while O.C.M. was on a
sabbatical at theUnitéMixte deRecherchedeGénétiqueVégétale with
funding from the Institut National de la Recherche Agronomique.

LITERATURE CITED

Bako, T. B., and T. Daboczi, 2002 Unbiased reconstruction of
nonlinear distortions. IEEE Instrumentation and Measurement
Technology Conference, May 21–23, 2002, Anchorage, AK.

Broman, K. W., 2005 The genomes of recombinant inbred lines.
Genetics 169: 1133–1146.

Chabrier, P., C. Gaspin and T. Schiex, 2000 Carthagene: a maxi-
mum likelihood multiple population genetic/radiated hybrid
mapping software. Plant & Animal Genome VIII Conference,
January 2000, San Diego, p. 19.

ComplexTraitConsortium, 2004 The Collaborative Cross, a com-
munity resource for the genetic analysis of complex traits. Nat.
Genet. 36: 1133–1137.

Elandt-Johnson, R. C., 1971 Probability Models and Statistical Methods
in Genetics. Wiley, New York.

Haldane, J. B. S., 1919 The combination of linkage values and
the calculation of distances between the loci of linked factors.
J. Genet. 8: 299–309.

Haldane, J. B. S., and C. H. Waddington, 1931 Inbreeding and
linkage. Genetics 16: 357–374.

Lander, E., and P. Green, 1987 Construction of multilocus genetic
maps in humans. Proc. Natl. Acad. Sci. USA 84: 2363–2367.

Lander, E. S., P. Green, J. Abrahamson, A. Barlow, M. J. Daly et al.,
1987 MAPMAKER: an interactive computer package for con-
structing primary genetic linkage maps of experimental and nat-
ural populations. Genomics 1: 174–181.

458 O. C. Martin and F. Hospital



Manly, K. F., R. H. Cudmore, Jr. and J. M. Meer, 2001 Map Man-
ager QTX, cross-platform software for genetic mapping. Mamm.
Genome 12: 930–932.

Muller, J., 1916 Themechanism of crossing over. Am. Nat. 50: 193–
207.

Ott, J., 1999 Analysis of Human Genetic Linkage, Ed. 3. Johns Hopkins
University Press, Baltimore.

Strickberger, M. W., 1985 Genetics, Ed. 3. MacMillan, New York.
Teuscher, F., V. Guiard, P. E. Rudolph and G. A. Brockmann,

2005 The map expansion obtained with recombinant inbred
strains and intermated recombinant inbred populations for fi-
nite generation designs. Genetics 170: 875–879.

Threadgill, D. W., K. W. Hunter and R. W. Williams, 2002 Ge-
netic dissection of complex and quantitative traits: from fantasy

to reality via a community effort. Mamm. Genome 13: 175–
178.

Wang, J., R. W. Williams and K. F. Manly, 2003 WebQTL: web-
based complex trait analysis. Neuroinformatics 1: 299–308.

Winkler, C. R., N. M. Jensen, M. Cooper, D. W. Podlich and O. S.
Smith, 2003 On the determination of recombination rates in
intermated recombinant inbred populations. Genetics 164: 741–
745.

Zou, F., J. A. L. Gelfond, D. C. Airey, L. Lu, K. F. Manly et al.,
2005 Quantitative trait locus analysis using recombinant inbred
intercrosses (RIX): theoretical and empirical considerations.
Genetics 170: 1299–1311.

Communicating editor: J. B. Walsh

Recombinations in RILs 459


