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ABSTRACT
The efficiency of marker-assisted selection (MAS) based on an index incorporating both phenotypic

and molecular information is evaluated with an analytical approach that takes into account the size of
the experiment. We consider the case of a population derived from a cross between two homozygous
lines, which is commonly used in plant breeding, and we study the relative efficiency of MAS compared
with selection based only on phenotype in the first cycle of selection. It is shown that the selection of the
markers included in the index leads to an overestimation of the effects associated with these markers.
Taking this bias into account, we study the influence of several parameters, including experiment size
and heritability, on MAS efficiency. Even if MAS appears to be most interesting for low heritabilities, we
point out the existence of an optimal heritability (z0.2) below which the low power of quantitative trait
loci detection and the bias caused by the selection of markers reduce the efficiency. In this situation,
increasing the power of detection by using a higher probability of type I error can improve MAS efficiency.
This approach, validated by simulations, gives results that are generally consistent with those previously
obtained by simulations using a more sophisticated biological model than ours. Thus, though developed
from a simple genetic model, our approach may be a useful tool to optimize the experimental means for
more complex genetic situations.

THE development of highly polymorphic molecular paper; the number of markers is unlimited). They con-
markers has opened a new era for genetics and cluded that marker-assisted selection (MAS) should be

selection. Most traits of economic importance are quan- more efficient when the heritability of the trait is low.
titative. The use of molecular markers enables one to They mentioned, however, that to have such an advan-
identify and map quantitative trait loci (QTLs) that are tage at low heritability, it is necessary to study a large
involved in the variation of such traits. For the last six number of individuals. Lande and Thompson (1990)
years, the opportunity to use markers in breeding pro- discussed briefly the influence of the sampling size, but
grams to improve the efficiency of the selection of quan- only through its effect on the fraction of the additive
titative traits has received extensive attention. Lande genetic variance that was estimated to be associated
and Thompson (1990) developed a method based on with markers. Gallais and Charcosset (1994) studied
a multiple linear regression of phenotype on marker analytically the effect of experiment size, but they as-
types. In this method, markers are used as cofactors to sumed a strict linkage between markers and QTLs, and
increase the accuracy in the prediction of genotypic they neglected the possibility of false QTL detection
values. Phenotype and estimated effects associated with and the overestimation of the effects associated with
markers are combined in an index of selection. Experi- markers.
mental results of selection using markers have been Other published results on the efficiency of this
published (Stuber et al. 1982; Frei et al. 1986; Stuber method or related methods are based on simulations
and Edwards 1986; Stuber and Sisco 1992; Strom- (Whittaker et al. 1995; Gimelfarb and Lande 1994a,
berg et al. 1994), but to our knowledge, none of them b, 1995; Edwards and Page 1994; Zhang and Smith

used the method of Lande and Thompson (1990). 1992, 1993). In all these works, population size and
Lande and Thompson (1990) evaluated analytically heritability appear to be the key parameters of MAS

the expected efficiency of their method compared with efficiency. Compared with an analytical approach, simu-
conventional selection based solely on phenotype under lations are a powerful tool because they can be designed
some restrictive hypotheses (e.g., the size of the popula- to be closer to real conditions of selection, and they
tion is assumed to be infinite in the major part of the allow one to evaluate the efficiency of the method for

many successive generations of selection. Even if simula-
tions are quicker than field studies, they are time con-
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Assuming that P is distributed normally, the genetic advancetions between parameters. Moreover, simulations give
in the next generation under conventional phenotypic selec-mostly descriptive information on the effect of a parame-
tion is

ter and may not provide explanations about the way
DGPHE 5 is2

A/sP .this parameter influences the efficiency of MAS.
Extending the preliminary analysis of Gallais and The relative efficiency (RE) of MAS compared with pheno-

typic selection can be defined as the ratio of the genetic ad-Charcosset (1994), with fewer restrictive assumptions,
vance under MAS to the genetic advance under phenotypicthis paper presents an analytical approach to evaluate
selection with the same intensity of selectionthe relative efficiency of MAS, and it addresses the effect

of population size.
RE 5

DGMAS

DGPHE

. (4)

When the size of the population is infinite, there is no errorTHEORY
in the estimation of the weight coefficients nor of the effects
associated with markers. In that case, the relative efficiencyLande and Thompson’s analytical approach when popula-

tion size is infinite: Lande and Thompson (1990) proposed of MAS depends only on the heritability of the trait and on the
proportion of phenotypic variation associated with markers.to select individuals in a population assumed to be of infinite

size on an index combining phenotype and effects associated When the size of the population is finite, the weight coeffi-
cients and the effects associated with markers are estimatedwith markers. Because our aim is to predict the mean genetic

value of the population after one cycle of selection, the ap- with a possible error. This experimental error leads to a
smaller efficiency than expected under the assumption thatproach of Lande and Thompson (1990) can be extended to

the prediction of the genetic value of the offspring of the parameters are known. Moreover, as mentioned by Lande

and Thompson (1990), there is a bias in the estimation ofindividuals of the population. The selection index is then
the parameters because only markers with significant effectsĤi 5 bpPi 1 bmMi , (1) are included in the index. The authors considered that this
bias could be neglected because markers can be chosen a prioriwhere Ĥi is the predicted genetic value of the offspring of the

individual i in a population assumed to be of nearly infinite from the results of a QTL detection experiment conducted in
a previous generation.size, Pi is the phenotype of the individual i or the average

performance of its progeny if the trait is evaluated by progeny Genetic model used to study the case of a population of
finite size: Consider a reference population of infinite sizetest of selfed or crossed origin (e.g., cross with a tester for

hybrid breeding), Mi is the sum of the effects on the character derived from a cross between two inbred lines. Such popula-
tions are currently used to search for QTLs in plant species,associated with the markers and is called “molecular score,”

and bp and bm are the weight coefficients of the index. Only and the most commonly used are F2, backcross progenies
(BC), recombinant inbred lines (RIL), or doubled haploidssignificant effects are included in Mi. Because the aim is to

predict the genetic value of the offspring, only additive effects (DH). Consider a normally distributed quantitative trait that
is influenced by numerous (l) unlinked QTLs with no epistasis.associated with markers have to be considered. Lande and

Thompson (1990) proposed to test the significance of marker- Each QTL is supposed to be linked to a single marker. The
observed rate of recombination between a QTL and its linkedQTL associations by a multiple regression (developed by step-

wise selection) of phenotypes on marker types. They assumed marker, r, is assumed to be the same for all the marker-QTL
pairs. It is assumed that this situation provides a relevant ap-a high density ofmarkers so that recombination betweenmark-

ers and QTLs could be neglected. In this situation, the effects proximation for several markers in the vicinity of each QTL,
r being the smallest recombination rate between the QTL andof the detected QTLs are perfectly estimated. It results from

the regression theory that in very large samples, the weight the markers. With these assumptions, the additive genetic
variance associated with markers is (1 2 2r)2s2

A. The parametercoefficients that maximize the genetic gain are
m2 5 (1 2 2r)2 is the fraction of the total additive genetic
variance truly associated with markers. It is the maximumbp 5

1⁄2(s2
A 2 s2

M)
s2

P 2 s2
M

5
1⁄2h2(1 2 R2

A)
1 2 R2

P percentage of genetic variance that can be detected with this
set of markers. In addition to the l markers that are linked

bm 5
1⁄2(s2

P 2 s2
A)

s2
P 2 s2

M

5
1⁄2(1 2 h2)

1 2 R2
P

, (2) with a QTL, Nm 2 l markers unlinked to any QTL are consid-
ered (Nm is the total number of markers). We also assume
that all the markers are unlinked.where s2

A and s2
P are, respectively, the additive genetic and

phenotypic variances of the trait in the population to be se- To simplify this approach, we will consider, in a first step,
that all QTL effects are equal. Experimental results concern-lected and evaluated by progeny tests or per se value, s2

M is the
additive genetic variance associated with the markers, h2 is the ing QTL detection, however, show that the distribution of

QTL effects is generally not uniform. Many authors (e.g., Pat-narrow sense heritability of the trait in the testing system
considered (the proportion of the total phenotypic variance erson et al. 1991; Edwards et al. 1992) found few QTLs with

relatively large effects and many others with smaller ones.caused by additive effects of all QTLs), R2
P is the proportion

of phenotypic variation associated with additive effects ac- Thus, to be more realistic, different types of QTL effects will
be considered in a second step.counted for by markers, and R2

A is the proportion of additive
genetic variance associated with markers (R2

P 5 h2R2
A). Relative efficiency of MAS in a given experiment: In a given

Denoting Gi, the genetic value of the offspring of the individ- MAS experiment, we consider N individuals randomly sampled
ual i, we then have: Gi 5 1⁄2Ai, where Ai is the additive genetic from the reference population. Marker-QTL associations are
value of i. detected in this sample by a simple linear regression of pheno-

Assuming that Ĥ is normally distributed and that the selec- types on marker types, with a given probability a of type I
tion is conducted on both sexes, the genetic advance (DGMAS) error. In Lande and Thompson (1990), the effects associated
obtained with MAS after one generation is given by with markers were estimated by multiple regression of pheno-

types on marker types. Since markers are supposed to be inde-
DGMAS 5 2i cov(G,Ĥ)/√var(Ĥ ) , (3) pendent in this study, simple regression leads to nearly the same

estimated marker effects as multiple regression (with, however,where i is the intensity of selection.
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a slightly reduced power of QTL detection and a reduced where âq is the estimated effect accounted for by marker q, aq

is the true effect, and l is a parameter that depends only onprecision in estimations). Yet, simple regression presents the
advantage of being simpler from an analytical point of view the type of population considered (l 5 1 for DH or RILs,

l 5 0.5 for F2 and BC). Equation 7 depends on the estimatedbecause it tests each marker effect independently. The esti-
mated effects associated with markers are then used to predict effects associated with markers that are variable from one

sample to another. Two samples of the same size can possiblythe additive genetic values of the individuals of the reference
population of infinite size. This allows us to consider that the lead to different estimated values and then different REs. The

expected RE must then be evaluated over all the possiblecandidates for selection are independent from the individuals
used to estimate the parameters of the model. The weight results that can be obtained from a population of N individuals.
coefficients of the selection index that maximize the genetic Expected RE over all possible experiments of same size:
advance are obtained using Equation 2 where parameters are For a given experiment, the association between a given
replaced by their estimations (b̂p and b̂m). Because we only con- marker and a QTL is tested with Fisher’s test. As developed
sider additive effects and populations derived from a cross be- in appendix B, all the parameters estimated at a given marker
tween two inbred lines, the molecular score M is defined as are functions of the F statistics. Since only markers significantly

associated with a QTL are taken into account in the selection
Mi 5 o

q
âquiq , (5) index, the expectations of the estimated parameters are ob-

tained by using a truncated F distribution: only F values that
where âq is the additive effect associated with the q th marker areequal or superior to a critical F value need to beconsidered.
estimated in the experiment. Only markers significantly associ- It results that the expectations of the estimated parameters
ated with a QTL are included in M. uq is a dummy variable are not equal to their true values, but are overestimated. Even
taking a value of 21 if the individual i has one parental marker if a marker is not linked to a QTL, the expectation of the
type, 1 if i has the other parental marker type, and 0 if i is estimated variance accounted for by this marker is not zero.
heterozygous. In the reference population, we assume that As shown in appendix B, the use of truncated F distributions
there is no segregation distortion. The expected frequency allows us to obtain the expected RE over all the results that
for each marker type is 0.5 for BC, RIL, and DH. For F2 can be obtained after sampling N individuals from a given
populations, the frequencies are 0.25 for the parental marker reference population.types and 0.5 for the heterozygotes. Numerical applications: The formulas described above showLike Lande and Thompson (1990), we suppose that the that only m2 (related to r), h2, l, N, Nm, a, and the QTL effectheritability is known (for a discussion of a confidence interval distribution affect the RE of MAS for a given population type.around the estimated heritability, see Knapp et al. 1985). With In the numerical applications, we suppose that the populationthe assumption that the estimated effects at markers signifi- is composed of doubled haploids. Three sizes of experimentcantly associated with a QTL are independent, we have (100, 300, or 500), five type I error risks a (1, 5, 10, 20, or

30%), different numbers of QTLs (five or 10), different QTLŝ2
M 5 o

q
ŝ2

q ,
effects distributions (QTLs with equal effect or QTLs effects
following an approximate geometric distribution), and 30where ŝ2

q is the estimated additive variance accounted for by
markers are considered. For these parameters, the relativemarker q. It should be noted that, in principle, the estimated
efficiency of MAS is determined when m2 varies from 0 to 1effects associated with markers are not independent because
and when h2 varies from 0.05 to 1.they are estimated from the same sample. Nevertheless, the

Validation of this approach by simulations: In previous for-covariance between the estimated effects of unlinked markers
mulations, some assumptions were made concerning (1) theshould be negligible for large samples (N . 100). This as-
independence between the parameters estimated at differentsumption will be validated by simulations (see below). The
markers and (2) the expression of the expected efficiency.percentage of phenotypic variance associated with the additive
To validate these assumptions, simulations were performedeffects of markers (R2

P) can be estimated by the sum of the
with conditions as close as possible to those of the theoreticaladjusted Rsquares (r̂ 2

q ) at each marker significantly associated
approach. We simulated a population of N 5 300 DH (or anywith a QTL with a probability a of type I error. Charcosset

population where there are only two classes of genotypes atand Gallais (1996) recommended the use of the adjusted
each locus). The narrow sense heritability of the trait of inter-Rsquare instead of the Rsquare because it gives an unbiased
est was h2, and the additive variance associated with markersestimation of the percentage of phenotypic varianceassociated

with a QTL. The adjusted Rsquare, r̂ 2
q , is defined by was m2s2

A. We considered a total of 30 unlinked markers. This
was chosen to roughly correspond to 10 chromosomes with
three nearly independent markers on each. Marker selectionSSq

SStot
5

N 2 2
N 2 1

r̂ 2
q 1

1
N 2 1

,
was made by a simple regression of phenotypes on marker
types with a probability a of type I error. The marker effectswhere SSq is the sum of squares associated with the marker q,
and the weight coefficients of the selection index were esti-and SStot is the total sum of squares.
mated subsequently as described above. A second populationThen,
with the same genetic parameters was simulated, and individu-
als were selected using the estimations made from the first
population. One-tenth of the individuals were selected basedb̂p 5

h2 2 o
q

r̂ 2
q

1 2 o
q

r̂ 2
q

and b̂m 5
1 2 h2

1 2 o
q

r̂ 2
q

. (6)
on either (1) their index value (MAS) or (2) their phenotypic
value (PHE). The relative efficiency is computed from Equa-

The use of the adjusted Rsquare leads to a smaller estimation tion 4. For each set of parameters (N, m2, h2, and a), simula-
of the percentage of variance that is accounted for by markers. tions were replicated 100 times. Over 100 simulations, the
Thus, it reduces the weight given to the markers in the index averages of the percentage of phenotypic variance accounted
of selection. for by the markers (in the first population) and of the RE

Following appendix A, Equation 4 becomes were compared with the values predicted by the analytical
approach. Using the standard error, a confidence interval at
the 5% level was determined for the average values obtainedRE 5

(h2 2 o
q

r̂ 2
q ) 1 (1 2 h2) o

q
âqaql/s2

A

√(h2 2 o
q
r̂ 2

q )2 1 (1 2 h2)2 o
q

â2
ql/s2

P 1 2(h2 2 o
q
r̂ 2

q )(1 2 h2) o
q

âqaql/s2
P

,
by simulations. When the analytical result was included in
this interval, we concluded that the two approaches were not(7)
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TABLE 1

Estimated percentage of phenotypic variance associated with markers

Analytical resultsa Simulated results

Percent Selection bias Selection bias Average value over Standard error of
h2 m2(r)d a not included included 100 simulationsb the averagec

0.15 0.3 (0.226) 5 0.017 0.059 0.059 0.003
20 0.029 0.085 0.087 0.004

0.5 (0.146) 5 0.043 0.088 0.082 0.004
20 0.060 0.113 0.114 0.004

0.7 (0.082) 5 0.075 0.119 0.118 0.004
20 0.094 0.143 0.142 0.004

0.9 (0.053) 5 0.111 0.150 0.153 0.006
20 0.128 0.173 0.168 0.005

0.3 0.3 (0.226) 5 0.058 0.103 0.100 0.004
20 0.077 0.128 0.132 0.005

0.5 (0.146) 5 0.129 0.166 0.165 0.005
20 0.144 0.187 0.180 0.005

0.7 (0.082) 5 0.200 0.228 0.218 0.006
20 0.207 0.248 0.244 0.006

0.9 (0.053) 5 0.265 0.288 0.280 0.005
20 0.269 0.308 0.302 0.005

0.45 0.3 (0.226) 5 0.111 0.150 0.148 0.005
20 0.128 0.173 0.179 0.005

0.5 (0.146) 5 0.217 0.243 0.242 0.005
20 0.223 0.263 0.266 0.005

0.7 (0.082) 5 0.313 0.334 0.337 0.007
20 0.315 0.353 0.358 0.005

0.9 (0.053) 5 0.405 0.424 0.431 0.006
20 0.405 0.443 0.453 0.006

Comparison of the estimated percentage of phenotypic variance associated with markers obtained a from
expectations based on an analytical approach (bias caused by the selection of the markers in the index taken
into account or not), and b from the average estimated value over 100 simulations.

c The standard error of the average value obtained by simulation was used to determine a confidence interval
at the significant level of 5% and to test the adequacy between calculations and simulations. The size of the
population is 300, and there are five QTLs of equal effects.

h2, heritability of the trait; m2, percentage of genetic variance associated with markers; a, type I level risk.
d r indicates the corresponding rate of recombination between marker and QTL.

significantly different. In the analytical approach, the bias Hence, our approach seems to be a good approximation of
the realistic situation.caused by the selection of the markers was taken into account.

To investigate the importance of this bias, the analytical results
obtained by considering that this bias could be neglected in

RESULTSthe formulae (i.e., with no false detection and no overestima-
tion of the effects of QTLs) were also given and compared

Validation of the analytical approach by simulations:with simulation results.
The analytical results obtained with bias of selectionComparisons between simulations and analytical results

were made for 24 conditions [two a probabilities of type I taken into account or neglected are compared to the
error (5% and 20%), three heritabilities (0.15, 0.3, and 0.45), simulation results (Tables 1 and 2). The estimation of
and four m2 parameters (0.30, 0.5, 0.7, and 0.9)]. the percentage of variance associated with markers ob-To simplify the formulation of the expected RE of MAS, it

tained by the analytical approach is included in thewas assumed in the analytic approach that selection is per-
confidence interval at the 5% level of significance offormed in the reference population, and not in the sample

used to estimate marker-QTL associations, as would be the case the average value found on 100 simulations (Table 1).
in true experiments. To validate this assumption, simulations Taking into account selection bias through truncated
conducted with only one population instead of two were per- F distribution is, therefore, a valid way to predict the
formed, and the results were compared with those obtained estimated percentage of variance associated with mark-with two populations. Only minor differences were observed

ers. For low m2 and heritabilities, the bias in the estima-between results of simulations conducted with one or two
tion of the variance associated with markers is impor-populations(results not presented). The maximum difference

in RE was z0.1, but the differences were generally z0.01. tant, the estimated value being at least twice the true
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TABLE 2

Relative efficiency of MAS

Analytical resultsa Simulated results

Percent Selection bias Selection bias Average value over Standard error of
h2 m2(r)d a not included included 100 simulationsb the averagec

0.15 0.3 (0.226) 5 1.238 1.003 1.033 0.039
20 1.393 0.995 0.989 0.036

0.5 (0.146) 5 1.548 1.347 1.434 0.045
20 1.744 1.368 1.427 0.078

0.7 (0.082) 5 1.890 1.713 1.729 0.050
20 2.077 1.720 1.776 0.060

0.9 (0.053) 5 2.229 2.073 2.165 0.078
20 2.385 2.051 2.100 0.063

0.3 0.3 (0.226) 5 1.155 1.077 1.108 0.020
20 1.205 1.055 1.053 0.017

0.5 (0.146) 5 1.343 1.271 1.296 0.025
20 1.384 1.236 1.244 0.020

0.7 (0.082) 5 1.536 1.464 1.436 0.025
20 1.559 1.407 1.418 0.024

0.9 (0.053) 5 1.724 1.654 1.663 0.026
20 1.734 1.585 1.618 0.026

0.45 0.3 (0.226) 5 1.089 1.060 1.046 0.010
20 1.104 1.044 1.034 0.010

0.5 (0.146) 5 1.189 1.156 1.165 0.011
20 1.196 1.127 1.116 0.012

0.7 (0.082) 5 1.297 1.258 1.259 0.014
20 1.299 1.218 1.201 0.015

0.9 (0.053) 5 1.420 1.374 1.363 0.015
20 1.420 1.326 1.321 0.015

Comparison of the RE of MAS obtained from a expectations based on an analytical approach (bias caused
by the selection of the markers in the index taken into account or not), and b from the average relative efficiency
over 100 simulations.

c The standard error of the average value was used to determine a confidence interval at the 5% significance
level and to test the adequacy between calculations and simulations. The size of the population is 300 and
there are five QTLs of equal effects.

h2, heritability of the trait; m2, percentage of genetic variance associated with markers; a, type I level risk.
d r indicates the corresponding rate of recombination between marker and QTL.

value. Detections of false QTLs and overestimations of markers and QTLs, and the probability a of type I er-
ror). The heritability of the trait results from both thethe effects accounted for by markers explain these dif-

ferences. For the RE of MAS (Table 2), results of simula- biology of the trait and experimental conditions because
it can be increased by using replications of genotypestions are not significantly different from the analytical

ones when selection bias is taken into account. Not (in the case of plants) or performances of relatives to
reduce the experimental error.considering selection bias leads to overestimating the

actual relative efficiency of MAS. This overestimation is Figure 1 shows the domains of RE of MAS compared
with selection based on phenotype in function of r andespecially important for low heritabilities, low m2 and

for high a. Simulation results therefore show that the h2 for N 5 100, 300, or 500, as well as for two numbers
of QTL effects: 5 or 10 of equal effects. The differentbias caused by the selection of the markers can be impor-

tant. Since this bias cannot be easily corrected in true domains are separated by lines corresponding to REs
varying from 1 to 2.75 by 0.25. It is seen that for aexperiments, it is important to consider it in the evalua-

tion of the RE of MAS. given N and with a 5 5%, domains with the highest RE
correspond to low heritabilities. When the heritabilityInfluence of biological parameters (h2, l, and QTL

effects distribution) on the RE of MAS: We can distin- is high, genotypic values are well estimated by the phe-
notype, the weight given to the markers in the selectionguish two groups of parameters: those that depend on

the biology of the trait (number and effects of the QTLs) index is low, and MAS tends to be equivalent to pheno-
typic selection. Nevertheless, with an a risk level of 5%,and those that depend only on experimental conditions

(the size N of the population, the distance between the RE decreases for very low heritabilities (,0.15). At
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Figure 2.—Effect of heritability and genetic model on RE of MAS. The RE of MAS (ordinate) compared with selection based
solely on phenotype is given for different heritabilities (abscissa) of the trait and four genetic models. For the four models, the
number of QTLs in each class of effect and the percentage of variance accounted for by each QTL of the class are given. The
size of the population was fixed at 300, the percentage of genetic variance accounted for by markers is 0.7, and the type I level
risk is 5%. See text for models description.

such heritabilities, the power of detection is small and distribution 1 when the heritability is ,0.3. Then, for
a given number of QTLs, equal effects lead to a lower REthe effects are estimated poorly. Since MAS can only be

efficient if the number of detected QTLs is high enough, of MAS compared with an “L” distribution or geometric
distribution, as assumed by Lande and Thompsonthere is an optimal heritability that varies slightly with

m2 but is around 0.15–0.2 for N 5 300 and five QTLs (1990) or Gimelfarb and Lande (1994a,b). In distribu-
tion 3, one QTL explains a large part of the geneticof equal effects in the model.

The RE of MAS for given N and a values decreases variance. The power of detection of such a QTL is high
enough for it to be detected even if the heritability isas the number of QTLs increases (see the comparison

between five QTLs vs. 10 QTLs of equal effects in Figure low. Then, compared with a distribution where all the
QTLs have the same effect, the RE of MAS is higher1). When there are many QTLs, the individual effect

(r 2
q ) of a given QTL is small, so the power of detection for small heritabilities. Conversely, when the heritability

is high, the third model leads to a slightly smaller REbecomes low. The RE also depends on the distribution
of the QTL effects. of MAS than the other models. This is because of the

minor QTLs in model 3 which have an r 2
q lower thanThe RE obtained with the same number of QTLs, but

three different QTL effect distributions are compared the QTLs of the other models, as well as a lower power
of detection. It appears that the RE obtained with fivein Figure 2: (1) 10 QTLs, all with the same r 2

q of 10%,
(2) 10 QTLs with three having an individual r 2

q of15.37% QTLs of equal effects is close to that obtained with
distribution 3. Also, the RE obtained with 10 QTLs ofand seven with an r 2

q of 7.7%, and (3) 10 QTLs with
one QTL having an r 2

q of 33.3%, three QTLs with an equal effects is comparable to the RE obtained with 15
QTLs and a distribution of effects close to a geometricr 2

q of 16.8%, and six QTLs with an r 2
q of 2.7%. Model 3

has been chosen to be close to a geometric distribution, series with nE 5 10 (result not presented). This suggests
that the RE obtained with a geometric distribution canas used by Lande and Thompson (1990), correspond-

ing to an effective number nE of five QTLs. The RE with be approximated by using a number of QTLs equal to
the effective number and by considering that all thesefive QTLs of equal effects is also presented in Figure 2

to be compared with the RE obtained with model 3. It QTLs have an equal effect. Nevertheless, by doing so,
the RE of MAS is slightly underestimated when Nh2m2appears (cf. Figure 2 with N 5 300, a 5 5%, and m2 5

0.7) that distribution 3 leads to a better efficiency of is low and slightly overestimated in the other cases (see
Table 3).MAS than distribution 2, which is slightly better than

Figure 1.—Domains of RE of MAS. Efficiency of MAS is compared with selection based solely on phenotype for different
heritabilities of the trait (ordinate) and marker-QTL recombination rates (abscissa).The number of markers is 30. Three sizes
of population (N) are considered: N 5 100 (graphs a and b), N 5 300 (graphs c and d), and N 5 500 (graphs e and f). Two
genetic models are compared: five QTLs of equal r 2

q (graphs a, c, and e) and 10 QTLs of equal r 2
q (graphs b, d, and f).
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TABLE 3

Effect of different parameters on the relative efficiency of MAS

Experimental parameters

Genetic parameters

10 QTLs with a ‘‘geometric’’
Five QTLs with equal effects 10 QTLs with equal effects distribution, nE 5 5

m2 (r)a N Percent a h2 5 0.15 h2 5 0.3 h2 5 0.45 h2 5 0.15 h2 5 0.3 h2 5 0.45 h2 5 0.15 h2 5 0.3 h2 5 0.45

0.5 (0.146) 100 1 0.88 0.96 0.99 0.83 0.90 0.95 0.89 0.96 0.99
5 0.79 0.92 0.97 0.70 0.82 0.90 0.80 0.91 0.96

10 0.79 0.89 0.94 0.72 0.80 0.88 0.81 0.88 0.93
300 1 1.23 1.24 1.16 1.02 1.07 1.07 1.23 1.20 1.12

5 1.35 1.27 1.16 1.12 1.14 1.11 1.31 1.22 1.12
10 1.37 1.26 1.14 1.19 1.17 1.12 1.33 1.22 1.12

500 1 1.49 1.35 1.19 1.19 1.20 1.14 1.45 1.28 1.15
5 1.61 1.35 1.18 1.36 1.27 1.16 1.53 1.29 1.15

10 1.61 1.33 1.17 1.43 1.29 1.16 1.54 1.29 1.12

0.8 (0.053) 100 1 1.04 1.11 1.11 0.89 0.94 0.97 1.05 1.11 1.09
5 1.13 1.18 1.13 0.93 0.98 0.98 1.13 1.14 1.08

10 1.20 1.19 1.11 1.03 1.02 1.00 1.13 1.10 1.06
300 1 1.72 1.55 1.33 1.28 1.30 1.23 1.66 1.45 1.26

5 1.90 1.56 1.31 1.54 1.43 1.28 1.79 1.47 1.26
10 1.91 1.53 1.29 1.66 1.46 1.28 1.81 1.47 1.26

500 1 2.08 1.63 1.35 1.62 1.51 1.33 1.93 1.53 1.29
5 2.14 1.60 1.33 1.87 1.57 1.33 2.00 1.54 1.30

10 2.12 1.58 1.32 1.96 1.57 1.32 2.01 1.54 1.30

Expected RE of MAS compared with phenotypic selection for different biological parameters (number of QTLs, QTL effects
distribution, and heritability h2 of the trait) and experimental parameters (m2 and the corresponding the rate of recombination
between marker and QTL, r, population size N, and type I level risk, a). The total number of markers is 30.

a r indicates the corresponding rate of recombination between marker and QTL.

Influence of experimental parameters (N, m2, number and N 5 600 because of a higher risk of false QTL
detections. Nevertheless, the efficiency domains ob-of markers, and a) on RE: Figure 1 shows that N is an

important parameter. Obviously, the RE of MAS in- tained with a given population size, N, and a given num-
ber of QTLs, l, are approximately equal to the efficiencycreases with N. When N is large, the power of detection

and the accuracy of the estimation of the marker-associ- domains that would be obtained with 2l QTLs of equal
effect and a population size of 2N.ated effect are increased. Therefore, MAS seems to be

interesting only for populations of .100 or 200 indi- Figure 1 shows that the RE increases as the distance
between markers and QTLs decreases. Obviously, if theviduals. Increasing N is more important when the trait

is controlled by a high number of QTLs; the efficiency markers are the QTLs themselves (m2 5 1 or r 5 0),
selecting on markers is equivalent to selecting on QTLs.domains with N 5 300 and l 5 5 are very close to those

obtained with N 5 600 and l 5 10 (results are not pre- The marker-QTL distance in our model cannot be di-
rectly interpreted as a density of markers in a real ge-sented) if we consider in both cases an equal percentage

of markers linked with a real QTL (i.e., Nm 5 30 for l 5 netic map because, in the latter case, markers that are
linked on the same chromosome are not independent.5 and Nm 5 60 for l 5 10). This can be related to the

fact that if each marker accounts for a small part of the If the marker density is not too high, then it can be
assumed that the correlations between linked markersphenotypic variance (i.e., if m2h2/l ,, 1), the non-

centrality parameter of the F distribution is close to are not strong enough to greatly modify the results, and
r can be roughly related to the density of the markers.Nh2m2/l. Thus, with a given percentage of noninforma-

tive markers and a given probability of type I error, the If we assume the absence of interference, for the DH
population, r can be connected with the distance d be-noncentrality parameter appears to be the key parame-

ter that explains the relative efficiency of MAS. This is tween markers and QTLs by the mapping function of
Haldane (1919). If we suppose a uniform distributionno longer true for a same total number of markers

because there are more noninformative markers when of QTL positions on chromosomes, the expected dis-
tance between a QTL and the nearest marker is one-l 5 5 than when l 5 10. This leads to a lower relative

efficiency when l 5 5 and N 5 300 than when l 5 10 fourth of the distance between adjacent markers. On
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DISCUSSION

One of the aspects of this study is to take into account
the bias caused by the selection of the markers included
in the index. This bias affects the estimation of the
weight coefficients of the selection index and also the
estimation of the additive effect of each marker. In true
experiments, it is difficult to avoid this bias. Gimelfarb

and Lande (1994a) proposed to evaluate it by simulat-
ing a population of individuals with phenotypes con-
trolled exclusively by the environment, i.e., with no QTL.
This method, however, only considers the bias on the
estimated percentage of variance that is accounted for
by false positives and the bias that could be corrected
by using the adjusted Rsquare. The overestimation of
the true QTL parameters is not taken into account.

Figure 3.—Effect of heritability and type I risk level on RE Hence, the authors found that the correction using
of MAS. The relative efficiency of MAS (ordinate) compared their method is negligible when the population size iswith selection based solely on phenotype is given for different

.200, but their method does not correct all the bias.heritabilities (abscissa) of the trait and different type I error
With our approach, we considered the bias caused byrisks used in the detection of marker-QTL associations. The

size of the population is 300, the percentage of genetic vari- the overestimation of the QTL parameters, and we
ance explained by markers (m2) is 0.7, and five QTLs of equal showed that it has an important effect when the power
effects are included in the model. of QTL detection is small (Nm2h2 low) even if the popula-

tion size is .200. By means of simulations, Beavis

(1994) also found that the effects associated with de-our graphs r 5 30% could therefore be roughly interpre-
tected QTLs are more overestimated when the popula-ted as one marker every 180 cM. The realistic domains
tion size is low, and that this bias cannot be neglectedof the graphs then correspond to a recombination rate
even for a population of 500 individuals. Of course, itbetween marker-QTL, r, ,15% (which corresponds to
would be most useful to have an estimation of this bias4d , 72 cM and m2 . 0.49).
to correct the estimated values, but this requires furtherIncreasing a is also a way to increase the power of
investigation.detection, but it results in an increased risk of detecting

It was shown that the RE of MAS depends on thefalse QTLs. This parameter therefore has contradictory
genetics of the trait of interest, experimental character-effects on RE. Figure 3 (with m2 5 0.7 and N 5 300)
istics, and options concerning data analyses. Lande andshows that the effect of a depends on the heritability.
Thompson (1990) did not discuss the effect of the num-When the heritability is low, increasing a leads to a
ber of QTLs but, as for us, the RE of MAS depends onbetter RE. It is the opposite when the heritability is
the QTL effect distribution: MAS is more efficient forhigh. Thus, for low heritabilities, the gain in power of
small nE , i.e., when a few QTLs explain a major partdetection largely compensates the risk of false detec-
of the variation of the trait. Our results suggest thattions. As a consequence, the heritability optimum ob-
considering l QTLs of equal effects may give a goodserved with a 5 0.05% disappears for higher a values.
approximation of the RE that would be obtained withTable 3, however, shows that the effect of a also depends
a more realistic geometric distribution of effects corre-on the population size and m2. If m2 is low (e.g., for
sponding to a nE of l. The problem is to determine howinstance 0.5) and if the population size is small (N 5
many QTLs are involved in the variability of quantitative100), RE decreases as a increases. In this situation, even
traits under interest and how their effects are distrib-when the heritability is low, the markers that are truly
uted. Beavis (1994) showed that the number of QTLsassociated with QTLs account for only a minor part of
detected in a given experiment provides only an under-the genetic variation, and the gain in the power of
estimation of the true number of QTLs, which may bedetection does not compensate the risk of false detec-
.20 for most traits. In this study, we consider only ations. When the size of the population is large (.500)
small number of QTLs (,20). The effect of a higherand m2 is high, when a increases, the relative increase
number of QTLs could have been investigated, but withof RE tends to be smaller because the power of detection
many QTLs, it is no longer realistic to consider themis high enough, even with low a. In true experiments,
as independent. Without this assumption of indepen-m2 should generally be .0.5 because of the marker
dence, the calculations are much more complex. It isdensity now available for many species, and the size of
known that linkage between two QTLs could result inthe population will often be ,500 because of resource
the detection of a “ghost” QTL between them, whichlimitations; thus, the choice of a may be important to

maximize the gain of MAS. would decrease the efficiency of MAS when compared
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with that obtained with the same number of QTLs as- In our approach, marker-QTL associations are sup-
posed to be detected by a simple regression. It is nowsumed to be independent. The number of QTLs consid-

ered in this study can roughly be seen as the number acknowledged that the methods based on the simultane-
ous use of numerous markers (nearby markers or mark-of independent chromosomal areas that are involved

in the variability of the trait. ers linked to other QTLs) can improve the power of
detection of a given marker-QTL association and theWe demonstrated that even if the RE is generally

higher for low heritabilities, when the population size precision of the estimated QTL effects (see Lander and
Botstein 1989; Zeng 1994; Jansen and Stam 1994).is finite, there is an optimal heritability below which

the RE decreases. This was mentioned by Lande and Lande and Thompson (1990) proposed a stepwise re-
gression that was used by Gimelfarb and LandeThompson (1990) in their discussion and was con-

firmed by Hospital et al. (1997) by means of simula- (1994a,b, 1995) and Hospital et al. (1997). Obviously,
the methods leading to the best power of detectiontions. When the population is finite but large (.500),

however, the optimal heritability is close to zero, and should be used and could lead to better results than
the simple method investigated here. For all the possiblethis is of little practical impact.

We showed that RE increases with population size. methods, a stopping rule for the introduction of mark-
ers into the index must be defined. In our approach,Lande and Thompson (1990) studied the effect of pop-

ulation size on the estimated percentage of genetic vari- we studied the effect of the type I error risk, and we
found that it must be adapted according to the heritabil-ance accounted for by the markers significantly associ-

ated with a QTL. Their results, however, indicated that ity. If the heritability is low (,0.3), it is better to use a
larger type I error risk. It is the reverse at high heritabili-the population size below which MAS is not efficient

is much higher than the one we found. Lande and ties, but the effect of type I error risk is then expected
to be rather small. Thus, it is generally best to avoidThompson (1990) considered that a marker is always

included in the index if the expectation of the estimated using a low type I error risk, except when the heritability
is high and estimated accurately. In our approach, wevariance accounted for by this marker is equal or supe-

rior to a threshold value corresponding to a type I error did not study the effect of including too many parame-
ters in the model. A related problem was investigatedrisk of 1%; conversely, if the expected value of the esti-

mator is under the threshold value, the marker is consid- by Gimelfarb and Lande (1994a, 1995), who con-
cluded that there is an optimal number of markers toered to be never included in the index. Yet, in actual

experiments, such a marginal marker may have a very be included in the index.
In spite of the assumptions made, our analytical re-low but not zero power of detection. Hence, when the

population size is small, Lande and Thompson (1990) sults are consistent with results of simulations conducted
in this study, justifying the statistical approach. More-underestimate the expected percentage of variance as-

sociated with markers and, thus, the RE of MAS because over, our results are also generally consistent with the
results obtained by means of simulations by other au-in this situation no marker is considered “possibly de-

tected.” Our analysis shows that even if MAS is more thors using more sophisticated biological models.
The problem of MAS profitability: Our results showefficient for high population sizes, it is still efficient

for populations of z200 individuals, which are more that MAS can be more efficient than selection based
only on phenotype in a large range of situations, asrealistic than the large population sizes indicated by

Lande and Thompson (1990). long as the size of the population is at least 200, the
heritability of the trait is between 0.05 and 0.5, andWe pointed out that MAS is more efficient when the

distance between markers and QTLs is small. Such a the markers are relatively close to the QTLs. While the
expected RE of MAS is higher for low heritabilities (0.1–result was also observed by Edwards and Page (1994)

when only one marker was linked to each QTL, as in 0.2), however, our simulations show that the frequency
of experiments that lead to a worse genetic gain withour model. This effect was reduced when they used a

model with two markers linked to each QTL. Moreover, MAS than with phenotypic selection (RE , 1) is higher
(e.g., with five QTLs of equal effects, N 5 300, m2 5 0.5,Gimelfarb and Lande (1994a,b, 1995) showed that

with many markers on each chromosome there is an a 5 5%, and h2 taking the values 0.15, 0.3, and 0.45,
the number of simulations where RE , 1 are, respec-optimal density of markers, above which the RE de-

creases. According to their results, it seems that the tively, 13, 9, and 5). This was studied in more detail by
Hospital et al. (1997) by using a larger number ofeffect of the marker-QTL distance depends mostly on

the number of markers on each chromosome. If there simulations and a more complex genetic model. This
element reinforces the interest of MAS for mediumare numerous markers on each chromosome, the flank-

ing markers of each QTL give complementary informa- heritabilities (0.3–0.4).
Nevertheless, even if MAS is more efficient than pheno-tion and the distance between them is not the deciding

factor—until a certain limit. The results we obtained by typic selection, this method is expensive because of the
genotyping. Doing several replications of each genotypeconsidering that markers are close to the QTLs may be

a good approximation of the RE obtained with two or using complementary information coming from rela-
tives can be a way to increase the heritability and im-flanking markers further apart.
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and a residual term, Ei, which includes an environmental follows a central F distribution. The probability of de-
error term and a genetic term corresponding to nonad- claring the effect significant (false positive) is equal to
ditive effects the a type I level risk. If there is a QTL near the marker,

the statistic follows a noncentral F distribution. ThePi 5 Ai 1 Ei. probability of detecting it is the power of detection.
The genetic value of the offspring of i is equal to 1⁄2Ai. Following the approach described by Soller and
In the case of a population of finite size, if the selec-

Brody (1976) and Knapp and Bridges (1990), the
tion is made on the two sexes, it follows that power is defined as the probability Pr[FC21,N21,φ .

Fcrita,C21,N21,0] where C 2 1 is the number of independent
DGMAS 5 2i

cov(1⁄2A,b̂PP 1 b̂mM)

√var(b̂PP 1 b̂mM) estimated parameters (C 2 1 5 1 for the simple regres-
sion), Fcrita,C21,N21,0 is the critical value from a central F
distribution used to test QTL effect with a type I error of5 i

b̂Ps2
A 1 b̂mcov(A,M)

√b̂ 2
P s2

P 1 b̂2
ms2

M 1 2b̂Pb̂m cov(P,M)
, (A1)

a, and FC21,N21,φ is a random variable from a noncentral
F distribution (φ ≠ 0). Following Charcosset and Gal-where i is the intensity of selection. In this formula, we
lais (1996), the noncentrality parameter is φ 5 (N 2 1)suppose that the heritability is known. The molecular

score was defined in the text (Equation 5) as r 2
q

1 2 r 2
q

. The power of detection can then be deduced

Mi 5 o
q

âquiq. from the true effect accounted for by the marker.
Because all the markers are independent, among the

The marker type uq is independent of E. The estimated lj markers truly linked to QTLs having the same effect
additive effect âq associated with marker q has been (aj), we consider that the number of markers detected
estimated in the sample. It is a constant at the reference to be associated with a QTL follows a binomial law B(pj,population level. Then,

lj), where pj is the power of detection. There are as many
cov(P,M) 5 cov(A,M) 5 cov(o

l
alul, o

q
âquq) different binomial laws as the number of different QTL

effects (z) included in the model. In the same way,
5 o

q
o

l
alâq cov(ul,uq), among the markers unlinked with QTLs, the number

of markers erroneously detected to be associated with
where al is the additive effect of the lth QTL. All the a QTL follows a B(a, Nm-l ) binomial law, where
cov(ul ,uq) 5 0 except those involving a marker and its l 5 oz

j51lj is the number of markers truly linked to a
linked QTL. Denoting l 5 var(uq), the formula can QTL. Because all the markers are independent, we con-
then be simplified as sider that all these binomial laws are independent. All

the possible results of a QTL detection can be dividedcov(P,M) 5 cov(A,M) 5 o
q

âqaqvar(uq) 5 o
q

âqaql ,
according to the number of true QTLs with the jth(A2)
effect (ntj) and false QTLs (nf ) detected. It results that

where
E(RE) 5 o

l1

nt150
·· o

lj

ntj50
·· o

lz

ntz50
o

Nm2l

nf50
p(nt1). . .p(ntj). .p(ntz)·p(nf )aq 5 alcov(ul ,uq)/var(uq) 5 al(1 2 2r),

can be interpreted as an additive effect associated with E(RE/nt1,. . .,ntj,. . .,ntz,nf), (B1)the q th marker.
The parameter l depends only on the population type: where p(nt1), p(ntj) and p(ntz) are the probabilities of

l 5 1 for HD or RIL; l 5 0.5 for F2 and l 5 1⁄4 for BC. detecting nt1, ntj, and ntz QTLs among those of class
The variance of the molecular score is computed as 1,. . ., j, and z, respectively, p(nf ) is the probability of

detecting nf. Because binomial laws are independent,var(M) 5 s2
M 5 var(o

q
âquq) 5 o

q
â2

q l 1 2 o
q

o
q9≠q

âqâq9 cov(uq,uq9).
the probability of detecting simultaneously nt1, ntj, and
ntZ real and nf false QTLs is the product of individualBecause markers are independent, all cov(uq,uq9) 5 0.
probabilities. The problem is then reduced to the evalu-Then,
ation of E(RE/nt1,. . .,ntj,. . .,ntz,nf), the expected RE of MAS

s2
M 5 o

q
â2

q l. (A3)
conditional to the number of true and false QTLs de-
tected.Using Equations A2 and A3 and Equation 4 in the text,

In Equation 7, three terms depend on estimationsEquation A1 leads to the formula in Equation 7 in the
coming from the experiment o

q
r̂ 2

q , o
q

â2
q /ŝ2

P , andtext.

o
q

âqâq/ŝ2
P . Since

APPENDIX B

â2
q /ŝ2

P 5
N 2 1

N
SSq
SStot

5
N 2 2

N
r̂ 2

q 1
1
N

,For a given experiment, the association between a
given marker and a QTL is tested with a Fisher test. If
there is no QTL near the marker, then the statistic the three previous terms can be summarized in two:
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x 5 o
q

r̂ 2
q and y 5 o

q
aqâq/ŝ2

P. (B2) tions because it implies genotyping a lot of individuals
but using only half of them for QTL detection, or using
a previous generation to choose the markers. Here weThe expected relative efficiency can be approximated
only consider the RE of MAS in the first generation offrom a Taylor series by
selection. Because it is difficult to avoid this bias, we take
it into account when evaluating the expected relativeE[RE(x,y)] ≈ RE(E[x],E[y]) 1 1⁄2var[x]

]2RE(x,y)
]2x 2 |E[x],E[y]

efficiency of MAS by considering that estimated effects
associated with markers depend on a “truncated” F

1 1⁄2var[y]
]2RE(x,y)

]2y 2
|E[x],E[y] 1 cov[x,y]

]2RE(x,y)
]x]y

|E[x],E[y] .
distribution. r̂ 2

q and
âq

ŝP

are functions of F noted r̂2
q(F)

(B3)
and

âq

ŝP

(F ). Then, noting g(F), the density function of
To test the presence of a QTL near a marker, Fisher’s

test is performed. The value of the statistic, F, is con- an F distribution (a central distribution if there is no
nected with the estimated effects associated with mark- QTL near the marker or a noncentral distribution if
ers the marker is linked to a QTL),

E(x) 5 o
q

#
1∞

Fcrit

r̂ 2
q (F)g(F)dF and E(y) 5 o

q
#

1∞

Fcrit

âq

ŝP
(F)g(F )dF.r̂ 2

q 5
F 2 1

N 2 1 1 F 2 1
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(B6)
and

Because the expected effect associated with a marker,
considering truncated F distribution, is not null, weaqâq

ŝ2
P

5
|aq|
sP

! F(N 2 1)
N(F 1 [N 2 2])

(B5)
can associate an expected effect for false-positive mark-
ers. This expected effect because all the more important

(if we suppose that the sign of the effect associated with as a becomes smaller. For the same reason, the effect
a marker is always well estimated, i.e., aq and âq have the of a marker that is truly linked to a QTL is overestimated.
same sign). The overestimation becomes all the bigger as the power

The value of the estimated effect at a given marker of detection (and a) becomes smaller.
varies from one experiment to the other but its expected
value over all the possible experiments equals the true var(r̂ 2

q ), var 1âq

ŝP
2, and cov 1r̂ 2

q ,
âq

ŝP
2

effect because the estimator is unbiased. Nevertheless,
only markers with a significant effect are introduced are evaluated in the same way. With the assumption that
in the selection index. As mentioned by Lande and there is no covariance between the estimated variances
Thompson (1990), this selection leads to a bias because at different markers, we have
the F statistic at each marker is always bigger than the

var(x) 5 o
q

var(r̂ 2
q )

critical value. To avoid this bias, Lande and Thompson

(1990) proposed to detect the marker-QTL associations
var(y) 5 o

q

a2
q

s2
P

var1 âq

ŝP
2from one sample and to evaluate the effects accounted

for by the selected markers in another sample that is
independent from the first one and where the selection cov(x,y) 5 o

q

aq

sP
cov1r̂ 2

q ,
âq

sP
2.is conducted. This solution is not realistic in most situa- (B7)


