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ABSTRACT
We investigate the best way to combine into a single genotype a series of target genes identified in different

parents (gene pyramiding). Assuming that individuals can be selected and mated according to their genotype,
the best method corresponds to an optimal succession of crosses over several generations (pedigree). For
each pedigree, we compute the probability of success from the known recombination fractions between
the target loci, as well as the number of individuals (population sizes) that should be genotyped over
successive generations until the desired genotype is obtained. We provide an algorithm that generates
and compares pedigrees on the basis of the population sizes they require and on their total duration (in
number of generations) and finds the best gene-pyramiding scheme. Examples are given for eight target
genes and are compared to a reference genotype selection method with random mating. The best gene-
pyramiding method combines the eight targets in three generations less than the reference method while
requiring fewer genotypings.

RECENTLY there have been advances in the map- MAS clearly belongs to the field of statistical quantitative
ping of genes involved in the variation of quantita- genetics, established long before the advent of molecu-

tive traits, through quantitative trait loci (QTL) map- lar genetics. Recent developments on increasing the
ping experiments and analysis of genomic data. Such efficiency of MAS indicate that a better estimate of
studies on complex traits should lead to the identifica- breeding value is obtained by incorporating all markers
tion of a great number of genetic factors responsible in the molecular score (Lange and Whittaker 2001;
for the heritable variation of these traits. Furthermore, Meuwissen et al. 2001), which is in some way opposite
once these genetic factors are mapped, they can be to the fine mapping of QTL. Surely, better methods of
controlled by molecular markers and the corresponding gene mapping and estimation of breeding value through
genotypes of individuals can be assessed easily. As a con- markers are still needed and deserve further work.
sequence, the identification of individuals carrying fa- It must be noted, however, that another aspect of
vorable alleles at these loci will provide genetic material MAS also deserves more theoretical development. If
for the development of new improved varieties. we know the locations of a series of genes of interest

Most theoretical work on the application of marker- (hereafter referred to as target genes), the selection pro-
QTL associations in selection has focused on using cess may be reduced to a “building blocks” problem.
markers to estimate an individual’s breeding value more What is the “best” way to do the gene pyramiding? Could
reliably than when using its phenotype. In practice, a optimal pairwise mating of individuals on the basis of
selection index is generally built on the basis of both their known genotypes at target loci be more efficient
the marker score and the phenotypic value of individu- than selecting individuals on a molecular score and then
als (e.g., Lande and Thompson 1990; Hospital et al. mating them randomly? These are the questions we
1997; Moreau et al. 1998); individuals are then selected address in this article. Note that this problem is more
before being mated at random. Such strategies of a matter of simple Mendelian genetics extended to mul-
marker-assisted selection (MAS) aim at increasing popu- tiple loci (probabilities of recombination between known
lation (or line) mean genetic value for one or more genes) than one of quantitative genetics and statistics.
traits. Obviously, increasing genetic value rests on in- Suppose an ideal genotype (ideotype) at a series of
creasing the frequency of favorable genes controlling target genes can be defined prior to selection (the ideo-
that trait. However, deciphering the genetic architec- type has favorable alleles at all loci of interest) but that
ture of quantitative traits is not the primary objective it is not present in the starting population. The marker-
of MAS nor a prerequisite for its success. In this view, assisted selection process is then reduced to genotype

building where individuals are selected solely according
to their genotype at the target loci (or at linked markers
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design of optimal breeding schemes aimed at cumulat- n]}, with Pi being homozygous for the favorable allele
ing many genes is a complex problem that few authors at the ith locus and homozygous for unfavorable alleles
have studied so far. When several favorable genes are at the remaining n � 1 loci. We assume that the recombi-
originally hosted by only two different parents, the sim- nation fractions between the loci are known. We want
plest strategy involves the production of an F2, F3, recom- to derive the “ideal” genotype (called ideotype) that is
binant inbred lines (RIL), or doubled-haploid (DH) homozygous for the favorable allele at all n loci.
population. Then, the population is screened on the To obtain the ideotype, one must describe a way of
basis of molecular markers for individuals homozygous crossing the founding parents and their offspring to
at the requested loci. In this context, van Berloo and pass on all the favorable alleles to this ideotype. We call
Stam (1998) considered a set of identified QTL, each a particular set of crosses allowing this transmission a
controlled by two flanking markers, and studied selec- gene-pyramiding scheme. We assume that every founding
tion in RIL populations based on flanking markers to parent is involved in only one cross in the gene-pyramid-
produce the best hybrid. If all genes cannot be fixed in ing scheme.
a single step of selection, it is necessary to cross again As can be seen in Figure 1, we can distinguish two
selected individuals with incomplete, but complemen- parts for the gene-pyramiding scheme. The first part is
tary, sets of homozygous loci (Charmet et al. 1999). called a pedigree and is aimed at cumulating one copy of
However, such strategies are limited to small numbers all target genes in a single genotype (called root genotype).
of target loci because the population size necessary to The second part is called the fixation steps and is aimed
fix the target genes increases exponentially with the at fixing the target genes into a homozygous state, that
number of target loci. To cumulate more loci in a single is, to derive the ideotype from the root genotype.
genotype by selection on markers, Hospital et al. (2000) Pedigree: A pedigree can be represented by a binary tree;
proposed a marker-based recurrent selection (MBRS) it has n leaves corresponding to the n founding parents
method using a QTL complementation strategy in a (Figure 1) and n � 1 nodes. (We do not count the leaves
randomly mating population. When evaluating this ap- as nodes.)
proach using simulations with 50 detected QTL in a Each node of the tree is called an intermediate genotype
population of 200, they found that the frequency of and has two parents (Figure 2). So we distinguish be-
favorable alleles went up to 100% in 10 generations tween founding parents appearing at the top of the pedi-
when markers were located exactly on the QTL, but up gree (leaves of the tree) and (ordinary) parents involved
to only 92% when marker-QTL distance was 5 cM. The in crosses in the rest of the gene-pyramiding scheme.
reduced efficiency in the latter case comes from the prob- Obviously, each intermediate genotype becomes a par-
ability of “losing” the QTL during the breeding scheme

ent in the next cross. More importantly, an intermediate
because of recombination between the markers and the

genotype is not an arbitrary offspring of a given cross;QTL. This effect becomes more severe with increasing
rather it is a particular genotype selected among theduration of the breeding scheme because of the accu-
offspring such that all parental target genes are present.mulation of meioses; hence, it is important to cumulate
The part of a pedigree above a given node (i.e., leadingand fix the target genes as rapidly as possible. Hospital
to a given intermediate genotype) is called a subpedigree.et al. (2000) concluded that the optimization of pairwise

Intermediate genotype: An intermediate genotype iscrosses between selected individuals should be the most
noted H(s1)(s 2), where s1 is the subset of target genes inher-efficient way to decrease the duration of the breeding
ited from one parent and s 2 is that from the other. Notescheme at constant cost.
that, within a subset, the favorable alleles are in couplingIn this study, we present a general framework to opti-
phase (they were carried by the same gamete), whilemize breeding schemes to accumulate identified genes
favorable alleles from different subsets are in repulsionfrom multiple parents into a single genotype (gene-pyra-
phase (carried by different gametes). Each intermediatemiding schemes). We describe an algorithm that allows
genotype must produce and pass on to its offspring aus to build every possible succession of pair crosses lead-
gamete s carrying all the favorable alleles in s1 and s 2ing to the target genotype. We show how to compute
(so that s � s1 � s 2).the probabilities of gene transmission through these

Fixation steps: We consider the fixation steps separatelycrosses and investigate the duration (in terms of number
because it is not a matter of optimization in our frame-of generations) and the cost (in terms of population
work. Rather, it is a matter of breeding techniques,sizes) needed to produce the ideal genotype.
depending on particular conditions that will be the same
for all pedigrees. Hence, in our work we consider all

METHODS choices for the pedigree part of the gene-pyramiding
scheme, while the fixation steps follow a fixed protocolDefinitions: We want to cumulate into a single geno-
and will have the same duration regardless of the roottype genes that have been identified in multiple parents.
genotype. Nevertheless, let us briefly consider the wayFor this study, we assume that we have n loci of interest

and a set of n founding parents labeled {Pi, i � [1, . . . , these steps can be implemented in practice as well as
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Figure 1.—Example of a gene-pyramiding
scheme cumulating six target genes. Graphical
representation of the objects defined in methods
is shown; see text for details.

their impact on the efficiency of the gene-pyramiding the ideotype. The choice of the parent to use may be
subject to particular considerations depending on thescheme.
value of the founding parents, the position of the loci,One possible procedure for the fixation steps is to
etc., and was therefore not considered in this study.generate a population of doubled haploids from the

Another alternative to these methods would be toroot genotype. In this case, a population of gametes is
self the root genotype directly to obtain the ideotype.obtained from this genotype and their genetic material
However, selfing the root genotype breaks the linkageis doubled. This leads to a population of fully homozy-
between favorable alleles, and in general one cannotgous individuals, among which the ideotype can be
identify these breaks because linkage phase is rarelyfound. Using this method, the ideotype can be reached

in just one additional generation after the root genotype
is obtained. However, producing large populations of
doubled haploids is possible in only a few plant species.
Thus the fixation steps we implement for our study are
as follows.

First, obtain a genotype carrying all favorable alleles
in coupling (namely, H(1,...,n)(B)) by crossing the root
genotype with a blank parent (denoted H(B)(B)) con-
taining none of the favorable alleles. This guarantees
that the linkage phase of the offspring is known and
that the H(1,...,n)(B) genotype can be identified without
ambiguity.

Second, self H(1,...,n)(B) to give the ideotype in one genera-
tion.

With this procedure, the ideotype is reached in two
generations after the root genotype. This means that
the fixation steps correspond to two nodes and therefore
that the gene-pyramiding scheme has a total of n � 1 �
2 � n � 1 nodes.

A possible alternative to crossing with a blank parent
is a cross with one of the founding parents. In this case
the linkage phase is still known, and selection is for

Figure 2.—Details of a node of a pedigree. The gametesgenotypes that are homozygous for the target gene
(subsets of genes) passed on from the parents H(1)(2) and H(3)(4)brought by the founding parent but heterozygous for to the intermediate genotype H(1,2)(3,4) are denoted s, as well

the other targets. Hence, that target gene need not be as the gamete the intermediate genotype should pass on as a
parent of the next node.fixed subsequently, increasing the probability of getting
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known in selfed populations. Selfing the root genotype be quite limited, even when running such an algorithm
on a very powerful computer.and the following offspring would therefore be counter-

productive and span too many generations when com- A simple algorithm to build all possible pedigrees:
To obtain a pedigree of height h, we can merge twopared to the methods previously cited.

Pedigree height: The number of generations a pedi- subpedigrees, one of height h � 1 and one of height
�h � 1. Note that, as we demand that founding parentsgree spans is called the height of the pedigree, denoted

h. This height varies with the pedigree considered. Re- are involved in only one cross in a pedigree, we merge
only subpedigrees whose root genotypes have no targetcalling that the fixation steps considered in this work

span two generations, the complete gene-pyramiding genes in common. From this, we infer an iterative pro-
cess to build all possible pedigrees for cumulating nscheme spans h � 2 generations.

A pedigree is of maximum height when just one cross genes.
We consider the founding parents as pedigrees ofis performed at each generation (involving an interme-

diate genotype H and a founding parent). We call this null height (h � 0). Assuming we have constructed all
pedigrees of height �h, we generate all pedigrees oftype of pedigree a cascading pedigree in the rest of the

article. As only one new gene is cumulated at each height h� � h � 1 as follows:
generation, the height of a cascading pedigree is n � 1.

1. Examine all distinct pairs of subpedigrees {�1, �2} ofConversely, a pedigree is of minimum height when
respective heights h1 and h2, with h1 � h and h2 � h.the maximum number of crosses is performed at each

2. If the root genotypes of �1 and �2 do not have anygeneration. For any number of loci n, we can always
target genes in common, merge �1and �2 to form afind two unique integers a and b so that n � 2a � b,
subpedigree �.with 0 � b � 2a. It is then easy to show that the minimum

3. If � cumulates all n genes, store it; otherwise add itheight of a pedigree is a � 1. Finally, we get that the
to the list of subpedigrees of height h� � h � 1.height h of a pedigree cumulating n genes satisfies

This construction can be iterated until the maximumLog2(n) � h � n � 1, (1)
height is reached, namely h� � n � 1 (see Equation 1).

where x denotes the smallest integer larger or equal In Figure 3 we sketch the progress of this algorithm in
to x. the case of four genes.

Number of pedigrees: The number of pedigrees cu- Gene transmission probabilities through a pedigree:
mulating n genes is the number of binary trees with n Let us focus on a particular pedigree node, correspond-
labeled leaves, a problem studied many years ago ing to an intermediate genotype H(s1)(s2). On the basis of
(Rohlf 1983). Here we show another way to calculate the recombination fractions between loci, we can com-
this number. The root genotype of a pedigree cumulat- pute the probability that H(s1)(s2) passes on to its offspring
ing n target genes comes from the cross of two parents the set of genes s that is the union of s1 and s 2. If we
carrying, respectively, p and n � p target genes, where denote by �(s) the total number of genes in the set s,
(1 � p � n � 1). Let �(p) be the number of subpedi- we have �(s) � �(s1) � �(s 2). Let {a i } be the genes in
grees cumulating p specified genes. Summing up over set s ranked according to their position on the genetic
all possible values of p, we can compute the number map, so that s � (a1, a2, . . . , a�(s1)��(s 2)). Let rx ,y be the
�(n) of pedigrees cumulating n genes via recombination fraction between x and y. The probability

that a gamete generated by H(s1)(s2) contains the set s of
�(n) �

1
2 �

n�1

p�1
�np��(p)�(n � p). (2) genes is

The factor 1⁄2 is there to ensure that the crossing of two P(H(s1)(s2) → s) �
1
2 �

�(s)�1

i�1

�(i, i � 1), (4)
given parents is counted only once. This recursion can
be solved (see appendix a) and leads to

where �(i, i � 1) � rai ,ai�1
if genes ai and ai�1 are in dif-

ferent subsets and �(i, i � 1) � (1 � rai ,ai�1
) otherwise.�(n) � �

n

k�2

(2k � 3) � (2n � 3)(2n � 5) . . . 1 (3)
Note that other target genes might be on the map,
located between the ai’s, but not belonging to the setfor the total number of pedigrees cumulating the n
s; recombinations between those genes do not mattergenes. Table 1 gives some numerical values of �(n);
here. As an example illustrating Equation 4 considerclearly the total number of pedigrees increases very fast
the genotype H(1,3)(2,5,6). The probability that it passes thewith the number of loci considered. This shows that
set (1, 2, 3, 5, 6) isfor more than five genes, a hand enumeration of all

pedigrees is hopeless and so a computerized approach
P(H(1,3)(2,5,6) → (1, 2, 3, 5, 6)) �

1
2

(r1,2)(r2,3)(r3,5)(1 � r5,6).is mandatory.
We now describe an algorithm to build up all these (5)

pedigrees. Because of the fast increase of �(n) with n,
the number of loci that can be treated will necessarily Knowing these probabilities, the overall probability



517Optimization of Gene Pyramiding

TABLE 1

The number �(n) of distinct pedigrees for the cumulation of n genes

n 3 4 5 6 7 8 10 20

�(n) 3 15 105 945 10,395 135,135 3.4 	 107 8.2 	 1021

of obtaining the root genotype of a given pedigree is in the breeding scheme; if they all have the same proba-
bility of success 
 as considered here, then the overallthe product, over all the pedigree’s nodes (other than

the root node), of the probabilities calculated as in probability of success of the gene-pyramiding scheme
is 
p. The sum of all population sizes needed in theEquation 4.

Minimum population sizes necessary to obtain the gene-pyramiding scheme (pedigree and fixation steps)
is denoted by Ntot. The largest of the population sizesideotype: Let’s call p f and pm the probabilities computed

as in (4) that each parent of a given node passes on its to be handled at any node or step during the whole
gene-pyramiding scheme is denoted by Nmax.particular subset of genes. From these probabilities we

can compute the population size N needed to get the
intermediate genotype at this node with a probability

RESULTSof success 
. The probability that none of the N offspring
has the right genotype is (1 � p fpm)N ; identifying this We have developed a computer program implement-
with 1 � 
 gives ing the algorithm described in the methods section

that builds all pedigrees leading to the ideotype for a
N �

ln(1 � 
)
ln(1 � p fpm)

, (6) given number n of genes. Then, given the ri,j values, the
program determines the gene transmission probabilities
and the cumulated population size Ntot for each pedigreewhere ln denotes the natural logarithm. From (6), we can

compute the population sizes required at each node. Now followed by the fixation steps. We now apply this algo-
rithm to a set of particular cases to illustrate the resultsthe overall probability of success of the pedigree is the

product of the probabilities of success at each of its obtained with our method.
Cumulating four genes: a case study: Using our pro-nodes. Similarly, we can compute the population sizes

required for the fixation steps. The nodes associated gram, we have generated the 15 possible pedigrees for
cumulating four genes located on a single chromosome.with combining two founding parents always pass on

their target genes. Let p be the number of other nodes We assume that the recombination fractions between

Figure 3.—Example of progress of the
algorithm when building all pedigrees cumu-
lating four loci. (For subpedigree heights
greater than one, only a few cases are shown.)
Shaded squares represent intermediate ge-
notypes cumulating less than four favorable
genes. Intermediate genotypes that cumu-
late all four genes are labeled H(s1)(s2) (see
meaning in text); they are the root geno-
types. Dashed boxes indicate the two subpedi-
grees merged at the current step.
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Figure 4.—Representation of three different gene-pyramiding schemes cumulating four loci. Scheme a is based on a cascading
pedigree. Schemes b and c differ by the order of crosses of the founding parents. The target genes are represented by solid
circles. Other genes are represented by shaded boxes. At each node we give the transmission probabilities of the targeted genes
from parent to offspring. When the probability equals one, it is not indicated. The population sizes needed at each node (N)
and the cumulated population size (Ntot) are given.

adjacent loci are the same and correspond to 20 cM, probability of success used at each of these nodes was
0.991/3 � 0.9967. The hybrids between founding parentsusing Haldane’s mapping function. As the recombina-

tion fraction is the same for all pairs of adjacent loci, are obtained with a probability of 1, so that the popula-
tion required at the corresponding nodes was assumedsome gene-pyramiding schemes have the same transmis-

sion probability or population sizes. In that case, we to be one individual. The population size needed at
each node is indicated. The cumulated population sizeshow only one example per cumulated population size.

Figure 4 shows the three schemes that necessitate the Ntot is also given.
Figure 4a shows a gene-pyramiding scheme involvingsmallest Ntot and gives the allelic transmission probabili-

ties for each one. The population sizes were computed a cascading pedigree. It spans five generations (h � n �
1 � 3 for the pedigree height, plus two generations forso that the probability of success of each scheme was

0.99. In the scheme based on a cascading pedigree (Fig- the fixation steps) and requires the smallest cumulated
population size of all the schemes. The two other besture 4a), there are four nodes for which the probability

of obtaining the intermediate genotype is not 1. The schemes last four generations [h � Log2(n) � 2 for the
pedigree height plus two generations for the fixationprobability of success used at each of those nodes was

thus 0.991/4 � 0.9975. In the two other gene-pyramiding steps]. The scheme that necessitates the next smallest
Ntot is the one represented in Figure 4b. It cumulatesschemes, the number of such nodes is three, so that the
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TABLE 2

Minimum population sizes needed to cumulate eight genes
following different strategies: by optimization of gene

pyramiding (PWC1 and PWC2) or by marker-based
recurrent selection (MBRS)

PWC1 PWC2 MBRS

G Ntot Nmax Ntot Nmax Ntot Ng

5 4415 1248 — — — —
6 2741 1248 — — — —
7 2421 870 1147 341 7560 1080
8 2183 606 1166 341 3440 430
9 1394 341 1273 341 1710 190

10 — — — — 1100 110
11 — — — — 880 80
12 — — — — 840 70

The results obtained with each strategy are presented for
different durations G of the breeding scheme, that is, for
different numbers of generations. The cumulated population
size (Ntot) and the greatest population size (Nmax) of each
breeding scheme are given while Ng is the (constant) popula-
tion size at each generation for MBRS. The eight loci are
placed on a single chromosome, and the distance between
adjacent loci is 20 cM. The different strategies are described
in the text; for each breeding scheme, the probability of ob-
taining the ideotype was 0.99.

generation more than other schemes but requires a much
smaller Ntot; hence, cascading pedigrees are a good

Figure 4.—Continued. choice. However, when more loci are to be cumulated,
the difference in heights (i.e., in duration), between
cascading pedigrees and other types of pedigrees be-

loci 1 and 4 on one subpedigree and 2 and 3 on the comes more important as is illustrated below. Also, we
other, before generating the H(1,2,3,4)(B) genotype. The see that the advantage of cascading pedigrees relative
population sizes needed for this gene-pyramiding to other types of pedigrees depends on the method
scheme are large at all nodes when compared to the used to cross individuals at each node.
cascading type. The gene-pyramiding scheme repre- Cumulating many genes: We now examine a case with
sented in Figure 4c necessitates an even larger Ntot be- eight loci to get a feeling for the qualitative behavior
cause a huge population size is needed to produce the in the case of a larger number of target genes. We work
root genotype H(1,2)(3,4); conversely, the population size again with a constant recombination fraction between
needed to produce the H(1,2,3,4)(B) genotype is much adjacent loci corresponding to a Haldane mapping dis-
smaller. tance of 20 cM. Of interest are the cumulated popula-

We see here that cascading pedigrees are less expen- tion size (Ntot), the greatest population size among all
sive in terms of population sizes when compared to nodes (Nmax), and the total number of generations

needed to derive the ideotype. We examine these num-other pedigrees. This can be understood from the fact
that the node at the second generation of the noncas- bers for three breeding strategies.

Reference method for comparison (MBRS): We take as acading pedigrees involves a genotype composed of two
gametes that are both obtained by rare recombination reference method the MBRS strategy proposed by Hos-

pital et al. (2000). An individual’s molecular score isevents. Since the recombination probabilities are quite
low, the probability of obtaining the target genotype is computed as the number of target genes it carries. To

avoid fixation of unfavorable alleles because of linkagevery low. Hence, population sizes needed at this step
are typically enormous. On the contrary, for cascading disequilibrium and drift, individuals are selected on the

basis of a “QTL complementation” strategy that haspedigrees, only one of the parental gametes requires a
recombination event; hence the population sizes needed been shown to be more efficient than simple “mass

selection” on the molecular score. In their study, Hospi-at each step of a cascading pedigree are much smaller
than those for other pedigrees. In our case with four tal et al. (2000) started from a population in linkage

equilibrium; here, we use a starting population com-loci, the scheme with a cascading pedigree spans one
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posed of founding parents, which is thus in linkage
disequilibrium. To use MBRS as a reference method,
we simulated that breeding scheme and considered that
it was complete when the ideotype was obtained in 99%
of the simulations performed. We also assumed a con-
stant population size throughout generations; if Ng is the
population size at each generation, then the cumulated
population size (Ntot) is Ng times the number of genera-
tions. Naturally, increasing Ng leads to completing the
breeding scheme in fewer generations. But, when using
realistic population sizes, we found that with MBRS the
breeding scheme did not complete in �7 generations.
Conversely, we did not consider �12 generations of
MBRS because Ng was already small enough (70) for 12
generations.

Pairwise crossing 1 method: Our second breeding strat-
egy is to produce the ideotype by gene pyramiding (gen-
erating pedigrees), minimizing the cost (Ntot) over all
choices of crosses as described in methods. We refer to
this strategy as pairwise crossing of the first type (PWC1).
Taking the gene-pyramiding scheme with the lowest Ntot

for each height, we show in Table 2 our results for
schemes spanning from five to nine generations. (As
before, we impose that the ideotype is obtained with
probability 0.99.) The gene-pyramiding scheme span-
ning five generations is based on a pedigree that is a
perfectly balanced pyramid of height Log2(8) � 3,
where the maximum number of crosses is performed

Figure 5.—The two-step hybridization procedure for ob-at each generation. It starts with the eight founding taining an intermediate genotype carrying favorable alleles at
parents; at the first generation four crosses are per- four loci (1, 2, 3, 4) from two parents carrying favorable alleles

at loci (1, 2) and (3, 4). The first step is performed by crossingformed leading to four intermediate genotypes. At the
each parent with a blank genotype (not represented here).second generation two crosses are performed and at
The resulting offspring, carrying the corresponding targetthe third generation a single one is. After these three
genes in coupling phase on one of their chromosomes, are

generations are the fixation steps that span two genera- then mated to obtain the desired genotype, H(1,2)(3,4).
tions. The scheme spanning a total of nine generations
is based on a cascading pedigree; it is the one that
necessitates the smallest cumulated population size Ntot view and is thus preferred. Yet, it is harder to draw a
and has the smallest Nmax. For the gene-pyramiding general conclusion from the results in Table 2 for other
schemes spanning less than nine generations, Ntot and durations. Strictly speaking, the choice of a breeding
Nmax are larger. This can be explained in the same way strategy should incorporate economical and practical
as in the four-loci case: when following a noncascading considerations that are beyond the scope of this article.
pedigree, at least one intermediate genotype must be In particular, one has to consider: (i) the cost of geno-
obtained that carries two gametes, both of which are typing (depending mostly on Ntot, though not only),
produced by rare recombination events. The probability (ii) the cost of pairwise crossings that might be more
of obtaining such an intermediate genotype is typically demanding than random mating depending on the spe-
very low so the associated population size is quite large. cies, and (iii) whether the limiting step at Nmax is feasible
On the contrary, cascading pedigrees never have high given the genotyping facilities. As is often the case in
Nmax values. breeding theory, a trade-off between duration and cost is

One sees from Table 2 that the optimal crossing with observed here (lower cost for longer duration). However,
PWC1 always requires a smaller cumulated population using durations greater than nine generations would take
size (Ntot) than MBRS does for a given number of genera- us out of this article’s framework. More explicitly, consider-
tions. However, cumulated population sizes with PWC1 ing pedigrees lasting more generations than the maximum
are still not small and do not decrease very rapidly with given in Equation 1 requires allowing for other kinds
increased duration. Moreover, PWC1 requires larger of pedigrees, involving, for instance, founding parents
Nmax than MBRS does except when one uses seven gener- multiple times or the use of extra crosses when a given
ations. Clearly, for schemes spanning seven generations, one fails. Such extensions of our framework were not

considered.PWC1 is a better choice than MBRS from any point of
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Nevertheless, because of the large values of Ntot found pedigrees are not affected by PWC2 since a founding
parent is involved at each cross.) The best scheme lastingin PWC1, we now investigate whether a modified cross-

ing method can lower the population size needed (i.e., the nine generations with PWC2 in Table 2 does not corre-
spond to a cascading pedigree and has a lower Ntot thancost) further in the hope of exhibiting a gene-pyramiding

scheme that would more clearly outcompete MBRS. the best PWC1 of the same duration.
Because PWC2 favors pedigrees having many nodesPairwise crossing 2 method: Clearly the main bottlenecks

of noncascading pedigrees are their use of rare recombi- per generation, it is interesting to note that in Table 2
the scheme that requires the smallest cumulated popula-nations at some nodes, arising generally at advanced

generations. To alleviate this problem, we now adopt a tion size is also the one that spans the fewest generations.
Thus PWC2 fulfills both objectives of gene pyramiding:modified crossing procedure at each node, which we

call pairwise crossing of the second type (PWC2). minimization of pedigree duration and of pedigree cost!
Unless an even faster strategy is mandatory, e.g., for eco-In this modified gene-pyramiding strategy, we extend

PWC1 by introducing a two-step hybridization proce- nomic reasons, this pedigree using the two-step hybridiza-
tion procedure is optimal.dure to derive intermediate genotypes. This is illustrated

in Figure 5. Suppose an intermediate genotype H is to
be obtained from the cross of two (nonfounding) par-

DISCUSSION
ents Hm and H f. Rather than cross H m and H f directly,
we first cross each separately to a blank parent. From This study describes a general framework for the pyra-

miding of multiple genes into a single genotype. Bythe resulting offspring, we select those individuals car-
rying all of their parent’s favorable alleles (necessarily combining these results with those available for various

other aspects of marker-assisted selection (Dekkers andin coupling). Then two such individuals are crossed to
give H. The key point with this two-step hybridization Hospital 2002) it is now possible to optimize complex

breeding schemes incorporating molecular informa-procedure is that the two gametes coming from a recom-
bination can be selected independently. The efficiency tion. The possibility of developing specific genotypes

rapidly at low cost is of general interest not only for plantof this strategy comes from the fact that the sum of the
population sizes needed to obtain independently two or animal breeding but also for fundamental studies on

the genetic architecture of complex traits: examples aregametes in separate crosses is generally much lower than
the population size needed to obtain them jointly in a validation of candidate genes or QTL effects, studies of

genes by genetic background interactions, gene-genesingle cross. A specific example of the reduction in popu-
lation size with PWC2 can be found in appendix b. epistatic interactions, etc.

In our study, we made some simplifying assumptionsHence, the cost of obtaining genotypes from the crosses
with the blank parent can be much lower than that with on the genotype of the founding parents for the sake of

demonstration. In particular, we supposed that foundingthe hybridization performed in the PWC1 strategy.
Conversely, this two-step hybridization procedure has parents were homozygous for the favorable allele at

each target locus. However, in our framework, it is alsothe drawback of adding an extra generation at each of
the corresponding PWC1 nodes where it is used. (Note possible to study gene-pyramiding schemes starting

from an arbitrary population of different founding par-that if a founding parent is involved in a cross, we do
not perform the two-step hybridization as it is never ents. Then, founding parents other than the simple

ones we used can be input at the top of the tree. Foruseful.) This effect increases the total pedigree duration
by at most h � 1, where h is the pedigree height in the example, one such case is when one wants to cumulate

QTL. In this case the targets in the founding parentsPWC1 framework. Hence, the total duration of a PWC2
scheme is less than double that of the corresponding are not the genes of interest (QTL) themselves, but

markers linked to those genes. Then, one can simplyPWC1 scheme. The net effect is to favor pedigrees in-
volving many nodes per generation (e.g., perfectly bal- run our algorithm with founding parents, each carrying

several markers, instead of one target.anced pedigrees) compared to pedigrees involving few
nodes per generations (e.g., cascading pedigrees). Be- The only limitation for the genotype of the founding

parents is that the linkage phase of favorable allelescause of this, the value of noncascading pedigrees com-
pared to cascading ones is enhanced as is seen below. must be given. If this linkage phase is not known, it is still

possible to compute the gene transmission probabilitiesWhen cumulating eight loci using PWC2, we obtained
results for schemes spanning from seven to nine genera- conditionally on all possible linkage phases of target

genes in the founding parents. These probabilities cantions (Table 2). Compared to PWC1, the durations of the
optimal breeding schemes are increased at most by two then be used for the computation of optimization crite-

ria. As an example, one may use a conservative strategygenerations, but with the PWC2 strategy, the Ntot needed
are significantly reduced as can be seen in Table 2. to minimize cumulated population sizes: first, compute

all gene transmission probabilities for the different pos-With PWC1, the schemes lasting nine generations
corresponded only to cascading pedigrees. With PWC2, sible linkage phases; then consider the linkage phase

associated with the smallest probability and computeschemes lasting nine generations include both cascad-
ing and noncascading pedigrees. (Note that cascading cumulated population sizes accordingly. Alternatively,
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one may average the cumulated population sizes over not affect the overall pros and cons of cascading and
crossing with blank parents.all possible linkage phases.

Finally, the main limitation of the method proposedOur algorithm builds pedigrees assuming that each
here is that the number of possible pedigrees becomesstep is successful. However, even with high success rates
very large as one increases the number of loci, so theat each node, it is possible that in a particular case one
computer program implementing the exhaustive enu-of the pedigree steps will be unsuccessful. In this case,
meration cannot handle more than a dozen loci. Forin the offspring of the corresponding cross, we obtain
larger numbers of loci, one possibility is to apply ourgenotypes that carry less target genes than the interme-
method for each chromosome separately (a dozen tar-diate genotype wanted. However, as crosses are per-
gets per chromosome being now a bearable bound informed between genotypes carrying complementary sets
real situations) and assume that subsets of loci locatedof genes, the linkage phases of the offspring genotypes
on different chromosomes can be cumulated in parallelare always known; hence, these genotypes can be consid-
and then combined in a few generations to obtain theered as founding parents. Thus, if a step has been unsuc-
ideotype across chromosomes. This would probably givecessful, the best strategy is to restart the algorithm using
a reasonably good approximation of what the optimalas founding parents all the available genotypes (usually
pedigree across chromosomes might be. However, itthe founding parents plus the genotypes obtained so far).
may not give the exact solution, which is an unsatisfac-In some situations, we have used crosses between in-
tory situation from a theoretical viewpoint. To reallytermediate genotypes and what we called a blank parent.
tackle more loci, some intermediate optimizationA possible alternative to such crosses is to perform a
should select the best subpedigree producing a givengeneration of haplo-diploidization. Unfortunately, this
intermediate genotype that must be used. This kind oftechnique is not available for all organisms.
“pruning” approach can be converted into a dynamicAn interesting case occurs when the blank parent is a
programming algorithm that no longer needs to enu-recurrent parent with an elite genetic background in
merate all pedigrees. We are currently exploring thiswhich one wants to introgress all favorable genes. In
strategy.this case, the last fixation step can be performed after
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APPENDIX B

We show through an example that the PWC2 strategy
APPENDIX A allows one to reduce drastically the minimum popula-

tion size required to obtain an intermediate genotype.Here we show how to compute the total number of
We consider the pedigree node shown in Figure 5 anddifferent pedigrees. We start from the recursion relation
calculate the minimum population size required by each(2) in the text:
strategy to obtain the intermediate genotype H(1,2)(3,4).
We consider that the distance between adjacent loci

�(n) �
1
2 �

n�1

p�1
�np��(p)�(n � p). (A1) is 20 cM. This corresponds, using Haldane’s mapping

function, to a probability of recombination between
The initial condition is �(1) � 1. We introduce the adjacent loci of 0.16484. We set the overall probability
generating function of success for each strategy to be 0.99.

The PWC1 strategy generates H(1,2)(3,4) from H(1)(2) and
H(3)(4) in a single step. The relevant probability isg(u) � �

∞

p�1

�(p)
p !

up . (A2)
0.164842/4. Using Equation 6, the necessary population
size is found to be 676.Using (A1), one finds that the function g(u) satisfies

PWC2 uses two steps to obtain H(1,2)(3,4) from H(1)(2)the equation
and H(3)(4). As the PWC2 strategy involves three nodes,
we set the probability of success of each of these nodesg(u) �

1
2
g(u)2 � u , (A3)

to be 0.991/3 � 0.9967. The first step of PWC2 is aimed
at obtaining separately the genotypes H(1,2)(B) and H(3,4)(B).

which gives The probability of each of these events is 0.16484/2,
and the corresponding population size required is 67

g(u) � 1 � √1 � 2u. (A4) for each. Finally, H(1,2) and H(3,4) are mated to obtain the
desired genotype. The corresponding probability is (1 �Now recall the series expansion
0.16484)2/4 and the population size is 30. In total, the
PWC2 strategy requires 164 individuals, which is about√1 � x � �

1
2�

∞

p�0

�(p � (1/2))
�(p � 1)�(1/2)

xp , (A5)
four times less than what PWC1 requires.




