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Abstract

This paper provides a general method to derive algebraic expressions of genotype frequencies
for multiple loci under various mating systems including random mating, backcrossing, selfing,
and full-sib mating. For each mating system, general equations are presented. In the case of
three loci, comprehensive tables provide recurrence equations for genotype frequencies under
random or self mating, and expected genotype frequencies after two generations of full-sib
mating. Our results should prove useful in genetic linkage analysis.

Introduction

Theoretical problems in population or quantitative genetics often require that the expected
genotype frequencies at two or even more loci are known. This is the case for example in
genetic linkage analysis and marker-assisted selection. Obtaining such algebraic expressions
is in most cases theoretically possible, but in practice it is very laborious, when more than
two loci or more than two successive generations are considered. Hence, only few results
corresponding to some specific cases are available in the literature. Haldane and Waddington
(1931) presented complete recurrence equations for genotype frequencies at two loci under
self fertilization or full-sib mating and derived asymptotic expressions for the recombination
fraction. Allard (1956) tabulated comprehensive values for calculation of recombination frac-
tions in progeny of an F1 hybrid resulting from the cross of two homozygous inbred strains.
Feldman et al. (1974) gave recurrence equations for genotype frequencies at three loci un-
der random mating with selection. Snape (1988) made use of Haldane and Waddington’s
recurrence equations and studied recombination frequency estimates in single-seed descent
populations. The computation of three-locus genotype frequencies for the interval mapping
of quantitative trait loci was performed for F2 populations (Haley and Knott, 1992; Luo and
Kearsey, 1992) and for backcross populations (Martinez and Curnow, 1992). Knott and Ha-
ley (1992) handled the case of full-sib families without giving explicit formulae for genotype
frequencies. Visscher and Thompson (1995) gave expressions for haplotype frequencies under
backcrossing.

The practical difficulty of writing complex algebraic expressions without errors can be
overcome today by using computer programs performing symbolic calculations. We derive
here a general method to obtain closed expressions for genotype frequencies at any number
of linked loci with such a program and apply it to provide recurrence equations and complete
expressions for genotype frequencies at initial generations under random mating, backcrossing,
self fertilization, or full-sib mating with no selection. The results for selfing or full-sib mating
can be used to obtain genotype frequencies in recombinant inbred strains derived by either
mating scheme.

System and methods

This method was originally designed for use with the software package Mathematica version
2.2 (Wolfram, 1988), and we applied it to obtain symbolic expressions in the situations de-
scribed in the Algorithm section. The Mathematica notebooks may be obtained upon request
by sending your electronic address to the corresponding author. The computing time depends
on the number of loci, and on the number of successive generations taken into account. The
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algorithm could also be implemented in any available language to provide numeric results. In
the latter case, computation may be faster.

Definitions

Let n be the total number of loci. Since in most cases the studied populations will be the
progeny of a cross between two inbred strains, we consider the case of biallelic loci. There
are N = 2n possible gamete types. Each gamete type may then be represented by a decimal
integer i ranging from 1 to N . If we designate the two alleles at each locus as numbers
0 and 1, each gamete can also be represented by a binary number written with n digits

ranging from

n
︷ ︸︸ ︷

0 · · · 0 to

n
︷ ︸︸ ︷

1 · · · 1. This binary representation of gametes is equivalent to the set
representation used by Geiringer (1944), Schnell (1961) and Christiansen (1987, 1989), but
binary representation of gametes is more convenient here for automatic computations. The
correspondence between decimal and binary indexing of gametes is provided in Appendix A
by equations (A.1) and (A.2). An example of both systems of indices in the case of three loci
is:

Binary 000 001 010 011 100 101 110 111

Decimal 1 2 3 4 5 6 7 8 (1)

Let (x, y) denote the genotype formed by the union of (maternal) gamete x and (paternal)
gamete y. We denote the probability that genotype (x, y) produces the gamete i after meiosis
as Px,y[i]. A method for the automatic computation of P for any number of loci is described
in Appendix A.

Let fx,y(t) be the frequency of the genotype (x, y) at generation t (1 ≤ x ≤ y ≤ N),
the recurrence relationship with genotype frequencies at the previous generation (t − 1) is
obtained by combining the gametic probabilities in different ways depending on the mating
system as described below.

For some mating systems, we provide tables for the case of three loci. The relevant
parameter in all tables is rl (1 ≤ l ≤ n − 1), the recombination rate between adjacent loci l
and (l + 1). For full-sib mating, recombination rates in males and females were allowed to be

possibly different, so that rl is replaced by rm
l (recombination in males) or rf

l (recombination
in females) for each l.

Algorithm

The formulae given in this section do not require any assumption about interference in re-
combination. Absence of interference is assumed for the calculation of probabilities Rk (see
Appendix A, equation (A.6)) and, hence, is also assumed in the tables giving explicit results
(see Discussion).

Hybrid populations

Consider the hybrid population PA×B obtained by randomly crossing individuals from a
population PA to those from a population PB. This situation is relevant to hybrid breeding,
and is a general case of which random mating and backcrossing are special cases (see below).
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Let fA
x,y, fB

x,y and fA×B
x,y be the frequency of genotype (x, y) in PA, PB and PA×B, respectively.

We have:

fA×B
i,j (t) =

(
N∑

x=1

N∑

y=x

Px,y[i] f
A
x,y(t − 1)

) (
N∑

u=1

N∑

v=u

Pu,v[j] f
B
u,v(t − 1)

)

+

δ(i, j)

(
N∑

x=1

N∑

y=x

Px,y[j] f
A
x,y(t − 1)

) (
N∑

u=1

N∑

v=u

Pu,v[i] f
B
u,v(t − 1)

)

(2)

=
N∑

x=1

N∑

y=x

N∑

u=1

N∑

v=u

(
(

Px,y[i]Pu,v [j] + δ(i, j)Px,y [j]Pu,v [i]
)

fA
x,y(t − 1) fB

u,v(t − 1)

)

(3)

where δ(i, j) is such that:

δ(i, j) =

{

0 if i = j
1 if i 6= j

(4)

Random mating

In the case of random mating, genotype frequencies may be obtained from equation (3) by
setting PA = PB. The gametes produced by each genotype are pooled prior to mating, so
that the recurrence relationship may be obtained at the level of gamete frequencies. Let qx(t)
be the frequency of gamete type x which form generation t. We have:

qi(t) =
N∑

x=1

N∑

y=x

(

2δ(x,y) Px,y[i] qx(t − 1) qy(t − 1)

)

(5)

Recurrence relationships on gamete frequencies for three loci are given in Table 1. It can be
compared to Table 1 in Feldman et al. (1974) dealing with a symmetric viability selection
model.

— Table 1 around here —
The genotype frequencies are then simply obtained by

fi,j(t) = 2δ(i,j) qi(t) qj(t) (6)

= 2δ(i,j)
N∑

x=1

N∑

y=x

N∑

u=1

N∑

v=u

(

Px,y[i]Pu,v[j] fx,y(t − 1) fu,v(t − 1)

)

(7)

Backcrossing

In the case of backcrossing, let (b, b′) be the genotype of the recurrent parent, and let B be
the set of the indices of all possible gametes produced by the recurrent parent. Again, the
recurrence relationship on genotype frequencies can be obtained from equation (3). Consider
that PB is reduced to the single genotype (b, b′), and that PA is the donor population (PA(t) =
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PA(t − 1) ×PB). Genotype frequencies in the two populations are such that:

in PA : fA
x,y = 0 if x 6∈ B and y 6∈ B (except for the initial parent)

in PB : fB
u,v =

{

1 if (u, v) = (b, b′)
0 otherwise

We then have the recurrence relationship for genotype frequencies in PA:

fi,j(t) =

(
∑

x6∈B

∑

y∈B
y≥x

(

Px,y[i]Pb,b′ [j] + δ(i, j)Px,y [j]Pb,b′ [i]
)

fx,y(t − 1)

)

+

(
∑

x∈B

∑

y≥x

(

Px,y[i]Pb,b′ [j] + δ(i, j)Px,y [j]Pb,b′ [i]
)

fx,y(t − 1)

)

(8)

=
N∑

x=1

∑

y∈B

(
(

Px,y[i]Pb,b′ [j] + δ(i, j)Px,y [j]Pb,b′ [i]
)

fmin(x,y),max(x,y)(t − 1)

)

(9)

Genotype frequencies at two or three loci when both parents are homozygous are given in
Visscher and Thompson (1995). Note that our results extend to the case when parents are
not homozygous: recurrence relationships for genotype frequencies in the case of backcrossing
to any population PB can also be derived from equation (3).

Self-fertilization

Under selfing, offspring genotype frequencies must be first computed for each parent genotype
and then summed up. The recurrence relationship for genotype frequencies is:

fi,j(t) = 2δ(i,j)

(
N∑

x=1

N∑

y=x

Px,y[i]Px,y[j] fx,y(t − 1)

)

(10)

Genotype frequencies in recombinant inbred strains derived by repeated self mating can be
obtained numerically by iterating equation (10) until the equilibrium is reached.

In the progeny of a cross between two inbred strains, some genotype frequencies may be
equal at each generation, due to symmetry. Consider the set of all possible genotype frequen-
cies {fi,j}1≤i≤j≤N as the elements of a triangular matrix where maternal gamete indices (i)
are on rows, and paternal gamete indices (j) are on columns. The first diagonal D1 defined by
i = j (1 ≤ i ≤ N) contains the frequencies of the N genotypes that are homozygous at all loci.
The second diagonal D2 defined by j = N +1−i (1 ≤ i ≤ N/2) contains the frequencies of the
N/2 genotypes that are heterozygous at all loci. During meiosis, each recombination event
always produces two gamete types with the same frequency. Hence, depending on the geno-
type frequencies in the original F1 population, some genotypes may have the same frequency
at any following generation. Obviously, if the triangular matrix of genotype frequencies in the
original F1 population is symmetrical with respect to D2, this symmetry will remain valid at
any generation of selfing. Let i′ be the gamete type symmetrical to gamete type i. We define
i′ by:

i′ = N + 1 − i (11)
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for any i. We then have the symmetry on genotype frequencies:

fi,j = fj′,i′ (12)

for any genotype (i, j) (1 ≤ i ≤ j ≤ N).
For example, the symmetries defined by equation (12) hold in the case of three loci when

the original cross is 000
000 × 111

111 , so that the F1 population contains only the genotype 000
111 .

The frequencies of the 36 possible genotypes can then be described by only 20 parameters
(denoted f ∗

i ). These parameters and the corresponding genotypes are presented in Table 2
along with recurrence relationships on the f ∗

i parameters for three loci.

— Table 2 around here —
Under self-fertilization with the same initial cross, some additional symmetries exist within

each side of D2 on the triangular matrix. These symmetries may be determined a priori by
computing the recombination score of each genotype, as is done in our Mathematica notebook.
We define the recombination score of a gamete type as the number of recombination events
needed between each pair of adjacent loci to derive this gamete from the original F1. The
recombination score is written as a (n− 1) digit. For example, at three loci, if the original F1

is 000
111 , the recombination score of gamete type 011 would be 10 (one recombination between

locus 1 and locus 2, no recombination between locus 2 and locus 3). We then define the
recombination score of a genotype (i, j) as the sum of the recombination scores of i and j,
times an arbitrary sign. We chose to give a positive recombination score to genotypes with the
first locus being homozygous (for either of the two alleles), and a negative score to genotypes
with the first locus being heterozygous. For example, the recombination score of genotype 010

011
would be +21. If two genotypes have the same recombination score their frequencies are equal
at each generation. At three loci, this would reduce the number of f ∗

i parameters needed to
describe all possible genotype frequencies from 20 to 18 (f ∗

6 = f∗
12 ; f∗

9 = f∗
13). These additional

symmetries were not taken into account in Table 2, so that the same indexing may also be
used for full-sib mating (see below). Note that the symmetries given by the computation of
the recombination scores include the symmetries given by equation (12).

Full-sib mating

It is not possible to obtain a recurrence relationship for genotype frequencies for the case
of full-sib mating. Yet, it is possible to derive such a relationship for the frequencies of
couples of genotypes (i.e. couples of individuals). Let (x, y;u, v) be the couple of the (female)
genotype (x, y) and the (male) genotype (u, v). Let Gx,y;u,v be the matrix of frequencies of all
possible genotypes produced by the couple (x, y;u, v), so that Gx,y;u,v[i, j] is the probability
that genotype (x, y) produces the gamete i and that genotype (u, v) produces the gamete j.
If we allow recombination frequencies in males and females to be possibly different, we have:

Gx,y;u,v =
(

P f
x,y

)′
. P m

u,v (13)

where the prime denotes transposition and P f and P m are row vectors obtained as in equa-
tions (A.6) and (A.8) by replacing rl by rf

l (recombination in females) and rm
l (recombination

in males), respectively. Let hx,y;u,v(t) be the frequency of the couple (x, y;u, v) at generation
t, we then have the recurrence relationship for couple frequencies:
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hi,j;k,l(t) =
N∑

x=1

N∑

y=x

N∑

u=1

N∑

v=u

(
(

Gx,y;u,v[i, j] + δ(i, j)Gx,y;u,v [j, i]
)

(

Gx,y;u,v[k, l] + δ(k, l)Gx,y;u,v [l, k]
)

hx,y;u,v(t − 1)

)

(14)

The frequency of a given genotype is then obtained by:

fi,j(t) =
N∑

x=1

N∑

y=x

N∑

u=1

N∑

v=u

(
(

Gx,y;u,v[i, j] + δ(i, j)Gx,y;u,v [j, i]
)

hx,y;u,v(t − 1)

)

(15)

Genotype frequencies in recombinant inbred strains derived by repeated full-sib mating can
be obtained numerically by iterating equation (15) until the equilibrium is reached.

The symmetries defined by equations (11) and (12) apply under full-sib mating for geno-
type frequencies. They also induce symmetries on couple frequencies. In addition, the fre-
quency of the couple femalea ×maleb is equal to the frequency of the couple femaleb ×malea,
provided this symmetry existed also in the initial generation. Hence, the following symmetries
hold for couple frequencies at any generation:

hi,j;k,l = hl′,k′;j′,i′ = hj′,i′;l′,k′ = hk,l;i,j (16)

At three loci, when only the couple 000
111 × 000

111 is present in the population at the first
generation, these symmetries reduce the number of couples to be considered from 1296 to 360,
and the number of genotypes from 36 to 20. Genotype frequencies can then be represented
by the same starred parameters f ∗

i given Table 2. A table containing recurrence equations
for three loci was too big to be presented here, but it is possible to derive such a table with
our Mathematica notebook. We only provide genotype frequencies for the second generation
(Table 3). Note that for homogeneous recombination rates (rf

l = rm
l ), these frequencies

simplify to the frequencies for the F2 generation under selfing.
— Table 3 around here —

At two loci, recurrence relationships on couples frequencies provided by equation (14)
were checked against the corresponding table in Haldane and Waddington (1931, eqn 3.1).
This revealed some typographical errors in Haldane and Waddington’s table. The corrected
formulae are given in Appendix B.

Discussion

We have considered the case of biallelic loci. The extension to the case of more than two alleles
per locus is straightforward and requires a few minor modifications: 2 should be replaced by
m in the definitions of N , γ and g (see Appendix A).

The examples given in the tables were obtained under the hypothesis of no interference in
recombination. But, whether there is interference or not is only relevant to the definition of
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Rk (Appendix A, equation (A.6)). Hence, interference can be taken into account by modifying
this equation only. For example, R in equation (A.6) can be replaced by the strictly equivalent
function γ defined by Schnell (1961, equation 4), where linkage values can be derived from
any available map function assuming interference.

We hope that this paper provides a clear and explicit basis, which will avoid a large number
of geneticists having to go through laborious calculations in the course of their work. Also,
it is easy to include our formulae in computer programs concerning genetic linkage analysis.

The possible applications of our work are manifold. For example, genetic linkage analysis
is often performed after several generations of selfing (plant breeding) or full-sib mating
(animal breeding), so that the studied population can be a F3, a F4 or a population of
recombinant inbreds (F6 to F∞). Implementing our algorithm would then provide exact
values for the expected frequencies of marker-QTL haplotypes at the specified generation, and
hence improve the precision of interval mapping of Quantitative Trait Loci, or the estimation
of recombination rates. Also, in some situations (e.g. , backcrossing over several successive
generations), not only the genotype at the two nearest markers on each side of the putative
QTL is informative, but also the genotype at more distant markers. Interval mapping of
QTL could then be extended to multiple loci by using our algorithm, or true multipoint
tests at more than three loci could be performed in linkage analysis. This is also relevant
for any situation where expected genotype frequencies at many loci given a genetic map are
needed (e.g. , marker-assisted selection, graphical genotypes). More generally, our algorithm
can be useful in various types of numerical simulation programs dealing with population or
quantitative genetics.
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Appendix A

Automatic computation of multilocus segregations

We will use the following notations: V [k] is the k-th element of a given vector V , M [k, l] is
the element of a given matrix M at row k and column l and M [k, •] is the vector formed by
the k-th row of matrix M .

We consider n biallelic loci. There are N = 2n possible gamete types and N (N + 1)/2
possible genotypes. We need an indexed representation of all possible gamete types and
genotypes, and a representation of all possible recombination events relating the genotypes
to the gamete types. We use either a decimal, or a binary indexing of gamete types (see
Definitions section).

We define the general function Base such that Basen
b (i, l) gives the l-th digit of the repre-

sentation of i in base b with a total number of n digits. The binary representation of gamete
with decimal index i (1 ≤ i ≤ N) is stored in a row vector γi of length n. The relationship
between the decimal and the binary representation of the gamete is obtained by considering
that the vector γi contains the n digits of the binary representation of (i − 1), so that the
allele of gamete i at locus l (the l-th element of γi) is obtained by:

γi[l] = Basen
2 (i − 1, l) for 1 ≤ l ≤ n (A.1)

The set of vectors {γi}1≤i≤N is then the set of all possible gamete types.
Conversely the decimal index is obtained by i = g(γi), with

g(γi) = 1 +
n−1∑

k=0

2k γi[n − k] (A.2)

An example of both decimal and binary indexing of gametes is given in the text for the three
locus case (equation (1)).

Let ωi,j be the 2×n matrix containing the binary representation of genotype (i, j) formed
by the union of (maternal) gamete i and (paternal) gamete j.

ωi,j =

[

[ γi ]
[ γj ]

]

(A.3)
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During each meiosis, there is either recombination between two successive loci, or not,
regardless of the genotype at these loci. Then, the number of gamete types produced during
each meiosis depends on the genotype, since different recombination events may produce the
same gamete type (if at least one locus is homozygous), but at this point we treat separately
the gametes produced by different recombination events. Taking 1 as maternal origin (i)
and 2 as paternal origin (j), the set of all possible recombination events, regardless of the
genotype, is represented by the 2n × n matrix Φ such that

Φ[i, l] = 1 + Basen
2 (i − 1, l) (A.4)

(note that Φ[i, l] = 1 + γi[l] only in the biallelic case). Then, Φ can be used as a filter to
read ωi,j and provide the set Γi,j of all gametes produced by a given genotype (i, j) during
meiosis, in a form suitable for the following calculation of recombination frequencies. Γi,j can
be written as a 2n × n matrix such that:

Γi,j[k, l] = ωi,j[Φ[k, l], l] for

{

1 ≤ k ≤ 2n

1 ≤ l ≤ n
(A.5)

As previously noticed, several rows of the matrix Γ may be identical, but they will sum up
during recombination calculation.

Assuming no interference, the probability Rk associated to each row k of matrix Γ is
computed as

Rk =
1

2

(
n−1∏

l=1

[ ρk,l rl + (1 − ρk,l) (1 − rl)]

)

(A.6)

where rl is the recombination frequency between locus l and locus (l +1) (1 ≤ l ≤ n− 1) and
ρ is such that

ρk,l = |Φ[k, l] − Φ[k, l + 1] | (A.7)

Now, we need to sum up the probabilities Rk corresponding to identical gametes, and to
order it correspondingly with our indexing of all possible gamete types (i from 1 to N). With
the definitions above, g (Γi,j[k, •]) is the decimal index of gamete type produced by genotype
(i, j) with probability Rk. Let I be the identity matrix of size N , so that I[i, •] is the row
vector containing a 1 at position i and 0’s at other positions. The ordered frequencies of all
the possible gamete types produced by genotype (i, j) is then given by the row vector Pi,j of
length N such that

Pi,j =
2n

∑

k=1

Rk I[ g (Γi,j[k, •]) , • ] (A.8)

Appendix B

Recurrence relationships for couples frequencies at two loci un-

der full-sib mating.

We present here a correction of Haldane & Waddington (1931) eqn 3.1 in the notations of
these authors. Only the equations that using our method (equation (14)) were found to differ
from the results in the publication of Haldane & Waddington are given. Please refer to the
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original article for the other equations and the definition of the parameters.

Gn+1 =
1

16
(Q + α β U + γ δ U + αβ V + γ δ V + αβ γ δ W + 2α β γ δ X +

αβ γ δ Y )

Hn+1 =
1

2
H +

1

4
(α β + γ δ)L +

1

4
(α β + γ δ)N +

1

8
Q +

1

8
R +

1

16
(α2 + 2α β +

γ2 + 2 γ δ)U +
1

16
(2α β + β2 + 2 γ δ + δ2)V +

1

16
α γ (β γ + α δ)W +

1

16
(β γ + α δ) (α γ + β δ)X +

1

16
β δ (β γ + α δ)Y

In+1 =
1

2
I +

1

4
(α β + γ δ)M +

1

4
(α β + γ δ)P +

1

8
Q +

1

8
S +

1

16
(2α β + β2 +

2 γ δ + δ2)U +
1

16
(α2 + 2α β + γ2 + 2 γ δ)V +

1

16
β δ (β γ + α δ)W +

1

16
(β γ + α δ) (α γ + β δ)X +

1

16
α γ (β γ + α δ)Y

Mn+1 =
1

4
(α2 + γ2)M +

1

4
(β2 + δ2)P +

1

8
(β2 + δ2)U +

1

8
(α2 + γ2)V +

1

8
β2 δ2 W +

1

8
(β2 γ2 + α2 δ2)X +

1

8
α2 γ2 Y

Qn+1 = 2G +
1

2
H +

1

2
I +

1

2
J +

1

2
K +

1

4
(β2 + δ2)L +

1

4
(β2 + δ2)M +

1

4
(α2 + γ2)N +

1

4
(α2 + γ2)P +

1

4
Q +

1

8
R +

1

8
S +

1

8
T +

1

8
(α + β2 + γ + δ2)U +

1

8
(α + β2 + γ + δ2)V +

1

16
(β γ + α δ)2 W +

1

8
(α γ + β δ)2 X +

1

16
(β γ + α δ)2 Y

Tn+1 =
1

8
T +

1

8
(α β + γ δ)U +

1

8
(α β + γ δ)V +

1

16
(β γ + α δ)2 W +

1

8
(α γ + β δ)2 X +

1

16
(β γ + α δ)2 Y

Xn+1 =
1

4
T +

1

4
(α β + γ δ)U +

1

4
(α β + γ δ)V +

1

4
α β γ δ W +

1

2
αβ γ δ X +

1

4
α β γ δ Y

11



Table 1 Recurrence relationships for gamete frequencies at three loci under random mating.
For each gamete type i shown in first column, second column gives the corresponding

frequency qi, and last column gives recurrence equation for qi(t + 1) in terms of the qj(t)’s
where t is omitted.

Gamete Freq. Recurrence equation

000 q1 q1 + r1 (−q1q6 − q1q7 − q1q8 + q2q5 + q3q5 + q4q5) + r2 (−q1q4 − q1q6 − q1q8 +
q2q3 + q2q5 + q2q7) + r1 r2 (2 q1q6 + q1q8 − 2 q2q5 − q2q7 + q3q6 − q4q5)

001 q2 q2 + r1 (q1q6 − q2q5 − q2q7 − q2q8 + q3q6 + q4q6) + r2 (q1q4 + q1q6 + q1q8 −
q2q3 − q2q5 − q2q7) + r1 r2 (−2 q1q6 − q1q8 + 2 q2q5 + q2q7 − q3q6 + q4q5)

010 q3 q3 + r1 (q1q7 + q2q7 − q3q5 − q3q6 − q3q8 + q4q7) + r2 (q1q4 − q2q3 − q3q6 −
q3q8 + q4q5 + q4q7) + r1 r2 (q1q8 − q2q7 + q3q6 + 2 q3q8 − q4q5 − 2 q4q7)

011 q4 q4 + r1 (q1q8 + q2q8 + q3q8 − q4q5 − q4q6 − q4q7) + r2 (−q1q4 + q2q3 + q3q6 +
q3q8 − q4q5 − q4q7) + r1 r2 (−q1q8 + q2q7 − q3q6 − 2 q3q8 + q4q5 + 2 q4q7)

100 q5 q5 + r1 (q1q6 + q1q7 + q1q8 − q2q5 − q3q5 − q4q5) + r2 (q1q6 − q2q5 + q3q6 −
q4q5 − q5q8 + q6q7) + r1 r2 (−2 q1q6 − q1q8 + 2 q2q5 + q2q7 − q3q6 + q4q5)

101 q6 q6 + r1 (−q1q6 + q2q5 + q2q7 + q2q8 − q3q6 − q4q6) + r2 (−q1q6 + q2q5 − q3q6 +
q4q5 + q5q8 − q6q7) + r1 r2 (2 q1q6 + q1q8 − 2 q2q5 − q2q7 + q3q6 − q4q5)

110 q7 q7 + r1 (−q1q7 − q2q7 + q3q5 + q3q6 + q3q8 − q4q7) + r2 (q1q8 − q2q7 + q3q8 −
q4q7 + q5q8 − q6q7) + r1 r2 (−q1q8 + q2q7 − q3q6 − 2 q3q8 + q4q5 + 2 q4q7)

111 q8 q8 + r1 (−q1q8 − q2q8 − q3q8 + q4q5 + q4q6 + q4q7) + r2 (−q1q8 + q2q7 − q3q8 +
q4q7 − q5q8 + q6q7) + r1 r2 (q1q8 − q2q7 + q3q6 + 2 q3q8 − q4q5 − 2 q4q7)

rl: recombination rate between adjacent loci l and (l + 1).



Table 2 Recurrence relations for genotype frequencies at three loci under selfing. For each genotype shown in first column, second column

gives the corresponding f ∗
i parameter, and last column gives recurrence equation for f ∗

i (t + 1) in terms of the f ∗
j (t)’s where t is omitted.

Genot. Freq. Recurrence equation

000
000 , 111

111 f∗
1

1
4 (4 f∗

1 + f∗
5 + f∗

6 + s2
2 f∗

7 + f∗
8 + s13

2 f∗
9 + s1

2 f∗
10 + r2

2 f∗
11 + r13

2 f∗
13 + r1

2 f∗
16 + r1

2 s2
2 f∗

17 + r1
2 r2

2 f∗
18 + r2

2 s1
2 f∗

19 + s1
2 s2

2 f∗
20)

001
001 , 110

110 f∗
2

1
4 (4 f∗

2 + f∗
5 + r2

2 f∗
7 + r13

2 f∗
9 + s1

2 f∗
10 + s2

2 f∗
11 + f∗

12 + s13
2 f∗

13 + f∗
14 + r1

2 f∗
16 + r1

2 r2
2 f∗

17 + r1
2 s2

2 f∗
18 + s1

2 s2
2 f∗

19 + r2
2 s1

2 f∗
20)

010
010 , 101

101 f∗
3

1
4 (4 f∗

3 + f∗
6 + r2

2 f∗
7 + s13

2 f∗
9 + r1

2 f∗
10 + s2

2 f∗
11 + r13

2 f∗
13 + f∗

14 + f∗
15 + s1

2 f∗
16 + r2

2 s1
2 f∗

17 + s1
2 s2

2 f∗
18 + r1

2 s2
2 f∗

19 + r1
2 r2

2 f∗
20)

011
011 , 100

100 f∗
4

1
4 (4 f∗

4 + s2
2 f∗

7 + f∗
8 + r13

2 f∗
9 + r1

2 f∗
10 + r2

2 f∗
11 + f∗

12 + s13
2 f∗

13 + f∗
15 + s1

2 f∗
16 + s1

2 s2
2 f∗

17 + r2
2 s1

2 f∗
18 + r1

2 r2
2 f∗

19 + r1
2 s2

2 f∗
20)

000
001 , 110

111 f∗
5

1
2 (f∗

5 + r2 s2 f∗
7 + r13 s13 f∗

9 + r2 s2 f∗
11 + r13 s13 f∗

13 + r1
2 r2 s2 f∗

17 + r1
2 r2 s2 f∗

18 + r2 s1
2 s2 f∗

19 + r2 s1
2 s2 f∗

20)
000
010 , 101

111 f∗
6

1
2 (f∗

6 + r2 s2 f∗
7 + r1 s1 f∗

10 + r2 s2 f∗
11 + r1 s1 f∗

16 + r1 r2 s1 s2 f∗
17 + r1 r2 s1 s2 f∗

18 + r1 r2 s1 s2 f∗
19 + r1 r2 s1 s2 f∗

20)

000
011 , 100

111 f∗
7

1
2 (s2

2 f∗
7 + r2

2 f∗
11 + r1 s1 s2

2 f∗
17 + r1 r2

2 s1 f∗
18 + r1 r2

2 s1 f∗
19 + r1 s1 s2

2 f∗
20)

000
100 , 011

111 f∗
8

1
2 (f∗

8 + r13 s13 f∗
9 + r1 s1 f∗

10 + r13 s13 f∗
13 + r1 s1 f∗

16 + r1 s1 s2
2 f∗

17 + r1 r2
2 s1 f∗

18 + r1 r2
2 s1 f∗

19 + r1 s1 s2
2 f∗

20)
000
101 , 010

111 f∗
9

1
2 (s13

2 f∗
9 + r13

2 f∗
13 + r1 r2 s1 s2 f∗

17 + r1 r2 s1 s2 f∗
18 + r1 r2 s1 s2 f∗

19 + r1 r2 s1 s2 f∗
20)

000
110 , 001

111 f∗
10

1
2 (s1

2 f∗
10 + r1

2 f∗
16 + r1

2 r2 s2 f∗
17 + r1

2 r2 s2 f∗
18 + r2 s1

2 s2 f∗
19 + r2 s1

2 s2 f∗
20)

001
010 , 101

110 f∗
11

1
2 (r2

2 f∗
7 + s2

2 f∗
11 + r1 r2

2 s1 f∗
17 + r1 s1 s2

2 f∗
18 + r1 s1 s2

2 f∗
19 + r1 r2

2 s1 f∗
20)

001
011 , 100

110 f∗
12

1
2 (r2 s2 f∗

7 + r1 s1 f∗
10 + r2 s2 f∗

11 + f∗
12 + r1 s1 f∗

16 + r1 r2 s1 s2 f∗
17 + r1 r2 s1 s2 f∗

18 + r1 r2 s1 s2 f∗
19 + r1 r2 s1 s2 f∗

20)
001
100 , 011

110 f∗
13

1
2 (r13

2 f∗
9 + s13

2 f∗
13 + r1 r2 s1 s2 f∗

17 + r1 r2 s1 s2 f∗
18 + r1 r2 s1 s2 f∗

19 + r1 r2 s1 s2 f∗
20)

001
101 , 010

110 f∗
14

1
2 (r13 s13 f∗

9 + r1 s1 f∗
10 + r13 s13 f∗

13 + f∗
14 + r1 s1 f∗

16 + r1 r2
2 s1 f∗

17 + r1 s1 s2
2 f∗

18 + r1 s1 s2
2 f∗

19 + r1 r2
2 s1 f∗

20)

010
011 , 100

101 f∗
15

1
2 (r2 s2 f∗

7 + r13 s13 f∗
9 + r2 s2 f∗

11 + r13 s13 f∗
13 + f∗

15 + r2 s1
2 s2 f∗

17 + r2 s1
2 s2 f∗

18 + r1
2 r2 s2 f∗

19 + r1
2 r2 s2 f∗

20)
010
100 , 011

101 f∗
16

1
2 (r1

2 f∗
10 + s1

2 f∗
16 + r2 s1

2 s2 f∗
17 + r2 s1

2 s2 f∗
18 + r1

2 r2 s2 f∗
19 + r1

2 r2 s2 f∗
20)

011
100 f∗

17
1
2 (s1

2 s2
2 f∗

17 + r2
2 s1

2 f∗
18 + r1

2 r2
2 f∗

19 + r1
2 s2

2 f∗
20)

010
101 f∗

18
1
2 (r2

2 s1
2 f∗

17 + s1
2 s2

2 f∗
18 + r1

2 s2
2 f∗

19 + r1
2 r2

2 f∗
20)

001
110 f∗

19
1
2 (r1

2 r2
2 f∗

17 + r1
2 s2

2 f∗
18 + s1

2 s2
2 f∗

19 + r2
2 s1

2 f∗
20)

000
111 f∗

20
1
2 (r1

2 s2
2 f∗

17 + r1
2 r2

2 f∗
18 + r2

2 s1
2 f∗

19 + s1
2 s2

2 f∗
20)

Notations: sl = 1 − rl ; r13 = r1 + r2 − 2 r1 r2 ; s13 = 1 − r13 .



Table 3 Genotype frequencies at three loci in the second generation under full-sib mating.
The genotypes corresponding to the f ∗

i parameters are the same as in Table 2.

f∗
1 = 1

4 sf
1 sf

2 sm
1 sm

2

f∗
2 = 1

4 rf
2 rm

2 sf
1 sm

1

f∗
3 = 1

4 rf
1 rf

2 rm
1 rm

2

f∗
4 = 1

4 rf
1 rm

1 sf
2 sm

2

f∗
5 = 1

4

(

rf
2 + rm

2 − 2 rf
2 rm

2

)

sf
1 sm

1

f∗
6 = 1

4

(

rm
1 rm

2 sf
1 sf

2 + rf
1 rf

2 sm
1 sm

2

)

f∗
7 = 1

4

(

rf
1 + rm

1 − 2 rf
1 rm

1

)

sf
2 sm

2

f∗
8 = 1

4

(

rf
1 + rm

1 − 2 rf
1 rm

1

)

sf
2 sm

2

f∗
9 = 1

4

(

rm
1 rm

2 sf
1 sf

2 + rf
1 rf

2 sm
1 sm

2

)

f∗
10 = 1

4

(

rf
2 + rm

2 − 2 rf
2 rm

2

)

sf
1 sm

1

f∗
11 = 1

4

(

rf
1 + rm

1 − 2 rf
1 rm

1

)

rf
2 rm

2

f∗
12 = 1

4

(

rf
1 rm

2 sf
2 sm

1 + rf
2 rm

1 sf
1 sm

2

)

f∗
13 = 1

4

(

rf
1 rm

2 sf
2 sm

1 + rf
2 rm

1 sf
1 sm

2

)

f∗
14 = 1

4

(

rf
1 + rm

1 − 2 rf
1 rm

1

)

rf
2 rm

2

f∗
15 = 1

4

(

rf
2 + rm

2 − 2 rf
2 rm

2

)

rf
1 rm

1

f∗
16 = 1

4

(

rf
2 + rm

2 − 2 rf
2 rm

2

)

rf
1 rm

1

f∗
17 = 1

2 rf
1 rm

1 sf
2 sm

2

f∗
18 = 1

2 rf
1 rf

2 rm
1 rm

2

f∗
19 = 1

2 rf
2 rm

2 sf
1 sm

1

f∗
20 = 1

2 sf
1 sf

2 sm
1 sm

2

rf
l (rm

l ): recombination rate in females (males) between adjacent loci l and (l + 1) ; sl =
1 − rl.


