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ABSTRACT

We model selection at a locus affecting a quantitative trait (QTL) in the presence of genetic variance due to
other loci. The dynamics at the QTL are related to the initial genotypic value and to the background genetic
variance of the trait, assuming that background genetic values are normally distributed, under three
different forms of selection on the trait. Approximate dynamics are derived under the assumption of small
mutation effect. For similar strengths of selection on the trait (i.e, gradient of directional selection b) the way
background variation affects the dynamics at the QTL critically depends on the shape of the fitness function.
It generally causes the strength of selection on the QTL to decrease with time. The resulting neutral
heterozygosity pattern resembles that of a selective sweep with a constant selection coefficient corresponding
to the early conditions. The signature of selection may also be blurred by mutation and recombination in the
later part of the sweep. We also study the race between the QTL and its genetic background toward a new
optimum and find the conditions for a complete sweep. Overall, our results suggest that phenotypic traits
exhibiting clear-cut molecular signatures of selection may represent a biased subset of all adaptive traits.

THE recent improvements in methods to detect
positive selection from its molecular signature on

neutral polymorphism (Nielsen 2005) and the great
amount of information thus generated provide an
unprecedented opportunity for evolutionary biologists
to improve their understanding of the genetics of
adaptation and of the recent adaptive history of species,
in particular in humans (Nielsen et al. 2007).

On the one hand, genome scans search for recent
(Glinka et al. 2003; Akey et al. 2004; Nielsen et al. 2005;
Williamson et al. 2007) or ongoing (Voight et al. 2006;
Tang et al. 2007) selection by genotyping many markers
distributed throughout the genome and using the
properties of the polymorphism pattern (heterozygosity,
frequency spectrum) to reject neutrality either through
a parametric model-based approach or by just picking
outliers in the distribution (for the caveats of the latter
method, see Teshima et al. 2006). This kind of study
typically reveals many positive results. The next step is
then to search databases for the functions of the iden-
tified genes (Voight et al. 2006; Tang et al. 2007), to go
from the genotype to the phenotype, i.e., to answer the
question ‘‘Which phenotypic traits were recently adap-
tive in the lineage leading to the species or population
under study?’’ Yet, the relationship between the strength
of selection on a gene and the selection on the trait is

most often not explicitly defined in those studies.
Clearly, a gene that was under strong selection must
have affected a trait that was itself strongly selected.
Nevertheless, not all traits that were recently under
strong directional selection necessarily show strong
signatures of selection at the gene level. If there were
some systematic biases, it would be useful to identify and
quantify them, to be able to interpret molecular signa-
tures of selection in terms of phenotypic selection.

On the other hand, hitchhiking mapping methods
focus on smaller candidate regions (Schlotterer 2003)
that were previously identified either by functional
genetics or by genome scans (Thornton et al. 2007).
The aim is here to confirm recent positive selection in
the region, as well as to localize more precisely the target
of selection (Kim and Stephan 2002). The selection
coefficient may also be estimated on the basis of the
pattern of either the frequency spectrum (Kim and
Stephan 2002) or the heterozygosity (Wang et al. 1999;
Schlenke and Begun 2004; Olsen et al. 2006) in the
genomic region. The selection coefficient thus esti-
mated is a summary of the dynamics of the allele under
selection, but it has no clear biological meaning; it
measures only the propensity of the allele to grow in
frequency. Yet in biological reality a mutation affects a
phenotypic trait, and the trait is subject to selection. To
better understand the genetics of adaptation, we would
need to be able to interpret the selection coefficient
estimated at the gene level in terms of parameters of
selection at the trait level, especially in the context of
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complex quantitative traits (Falconer and Mackay

1996; Lynch and Walsh 1998).
There are two main views of how adaptation occurs as

a genetic mechanism. The first one, periodic selection
(Atwood et al. 1951), considers that adaptation pro-
ceeds by the successive fixations of beneficial mutations
that sweep through the population one after the other.
This view is supported by examples of experimental
evolution with microbes (Elena et al. 1996; Elena and
Lenski 2003). In microbes, the large population sizes
make purifying selection very efficient, which strongly
limits the amount of slightly deleterious polymorphisms
[the so-called nearly neutral mutations (Ohta 1992)]
that can be maintained by drift. As a consequence,
phenotypic traits have little genetic variance in such
organisms, except the variance generated anew by
mutation. Moreover, asexuality induces clonal interfer-
ence, which is expected to prevent simultaneous segre-
gation at several loci (Gerrish and Lenski 1998). Note,
however, that the process of clonal interference is partly
challenged by recent theories of ‘‘travelling waves’’ that
take into account the possibility that several beneficial
mutations occur in the same lineage (Desai and Fisher

2007; Desai et al. 2007), so periodic selection may not
apply to asexual populations under a high beneficial
mutation rate.

The second view of adaptation is that of quantitative
genetics, in which there is simultaneous selection at
many loci that contribute to adaptive traits (polygenic
selection). Such a vision is based on studies of the
response to selection (Falconer and Mackay 1996) and
of the maintenance of genetic variation (Barton and
Keightley 2002). It is more relevant when linkage is
loose, such that selective interferences between loci are
low—allowing for simultaneous sweeps at many loci—
and when selection is not very efficient, so that pheno-
typic traits can accumulate substantial genetic variation.
Therefore it is intended for sexual organisms of reason-
ably low population sizes. At its most extreme, this view
leads to the infinitesimal model designed by Fisher

(1918), in which many loci of small effect contribute to a
trait, such that the genetic values are normally distrib-
uted, an approach that has led to many fascinating de-
velopments in evolutionary quantitative genetics (Walsh

2007). In practice, the periodic selection and quantita-
tive genetics views are probably two extremes of a
continuum, and their main interest is that they provide
fairly good approximations of more complex real
genetic systems under certain conditions.

It is striking that the theory behind signatures of pos-
itive selection, namely genetic hitchhiking (Maynard

Smith and Haigh 1974), is clearly one of periodic
selection, whereas such signatures are searched in
sexual species (since hitchhiking mapping is dependent
on the recombination rate) that often exhibit substan-
tial genetic variation for many traits. For such species
(essentially plants or animals), the quantitative genetic

approach is widely used and recognized as efficient to
predict the response to selection, at least in the short
term, for cultivated as well as natural populations
(Falconer and Mackay 1996).

Here, our aim is to extend the theory of hitchhiking to
the context of a locus affecting a quantitative trait that
also harbors background genetic variation due to other
loci. Our hope is to help draw clearer conclusions
regarding selection on adaptive traits based on molec-
ular signatures of selection. For instance, is it just the
strength of phenotypic selection that matters or are
there other parameters that affect the outcome of a
selective sweep? If so, then what types of traits are more
likely to exhibit molecular signatures of selection? When
the selection coefficient of a gene can be estimated, what
can be inferred about the strength of selection on the
trait affected by that gene?

First, we recall the classic theory of hitchhiking and
the way that selection affects the neutral polymorphism
in such a context. Then, we use a model of selection on a
quantitative trait controlled by one focal locus and a
distribution of background genetic values—contributed
to by many other loci—to calculate the trajectory of a
beneficial mutation in such a case. We show that the
strength of selection on a quantitative trait locus and its
signature on neutral polymorphism can be strongly
affected by the background genetics of the trait and
that the outcome critically depends on the shape of the
fitness function.

MODEL

The classical hitchhiking model: We first summarize
the classical model of genetic hitchhiking as initially
developed by Maynard Smith and Haigh (1974) and
further studied by Stephan et al. (1992) and Barton

(1998). Consider a diploid, randomly mating popula-
tion and two biallelic loci A and B with recombination
rate r between them. The first locus, with alleles A1 and
A2 in respective frequencies p and q ¼ 1 � p, is under
additive positive selection, such that the relative fitnesses
of the genotypes A2 A2, A2 A1, and A1 A1 are 1, 1 1 s, and
1 1 2s, respectively. The other locus is neutral, with two
alleles B1 and B2 in frequencies u and 1� u, respectively.
In all the following, the subscript 0 denotes initial
conditions.

At the selected locus, the change in the frequency p of
allele A1 in one generation is

Dp ¼ spq

1 1 2ps
: ð1Þ

Since this expression is dependent on the mean fitness
of the population W ¼ 1 1 2ps, it is more convenient to
write the recursion using the ratio r ¼ p/q of allelic
frequencies, which yields
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r9 ¼ r 1 1 s � s2 p

1 1 ps

� �
; ð2Þ

where the prime denotes the value in the next gener-
ation and, for small s,

r � r0ð1 1 sÞt � r0est : ð3Þ

Hence, the selection model used in hitchhiking
theory (as well as in many standard population genetic
models) considers an exponential increase of the ratio
of allelic frequencies at the selected locus. This is also
equivalent to a logistic growth of the allele frequency p.

It can be shown easily that the change in the
frequency of allele B1 at the neutral locus is

Du ¼ sD

1 1 2ps
¼ D

pq
Dp; ð4Þ

where D is the linkage disequilibrium between loci A
and B, defined as f(A1B1) � pu [where f(A1B1) is the
frequency of the A1B1 haplotype]. The quantity D/pq
is a measure of the statistic association between the loci,
from the perspective of the selected locus. Using
indicator variables to denote the presence of allele A1

at locus A and of allele B1 at locus B, D is homologous
to the covariance between loci A and B, and D/pq is
homologous to the coefficient of regression (covariance
divided by the variance of one of the variables) of locus B
on locus A. It can be shown (see, e.g., Barton 2000) that
D/pq is also equal to the difference between the
frequencies of allele B1 in the selected (A1) and in the
unselected (A2) genetic backgrounds at locus A and that
it changes only because of recombination, regardless of
the strength of selection, such that

D

pq
¼ D0

p0q0
ð1� rÞt � D0

p0q0
e�rt : ð5Þ

Assuming s > 1, the changes in frequencies are well
approximated by continuous-time processes, and the
total change in frequency at the neutral locus is

Dutot ¼
D0

p0q0

ðpfix¼1�e

p0¼e
e�rtðpÞdp; ð6Þ

which is equivalent to Equation 1 (second line) in
Barton (2000). The function t(p) is the inverse dynam-
ics of the mutation A1, i.e., the time needed for this
mutation to reach a given frequency p, starting from a
threshold frequency e defined below. Note that the
argument leading to (6) is purely deterministic, in that
it does not take into account changes in frequencies
resulting from genetic drift. It is a well-known result of
the hitchhiking literature that the trajectory of a bene-
ficial mutation in a finite population is very well approx-

imated by its deterministic expectation in an infinite
population, provided the frequency p is sufficiently
distant from the absorbing edges 0 and 1; i.e., p 2 [e,
1 � e] (see, e.g., Stephan et al. 1992 or Barton 1998).
However, at very low (p , e) or very high (p . 1 � e)
frequencies, the trajectory of a beneficial mutation is
mainly controlled by genetic drift. The threshold fre-
quency e is thus defined as the frequency above which
the deterministic effect of selection overwhelms the
stochastic effect of drift on the trajectory of the benefi-
cial mutation in time. Using e instead of 1/(2Ne) as the
starting frequency of the mutation thus allows us to
partially account for stochasticity in a deterministic
framework: it acts as a ‘‘filter’’ to focus only on the
mutations that can indeed reach high frequencies. In
practice, simulation results show that a value of e ¼ 1/
(4Nes) performs well (Kim and Stephan 2002). Note
also that conditional on final fixation, a beneficial
mutation reaches e rapidly, so it is a good approximation
to assume that no recombination occurred in this time
lapse (Barton 1998).

The initial association D0=p0q0 depends on the start-
ing conditions. When the mutation A1 appears in a
single copy, it can be associated either with B1 (with
probability u0), leading to D0=p0q0 � 1� u0, or with B2

(with probability 1 � u0), leading to D0=p0q0 � �u0.
Combining these two events, the expected total re-
duction of heterozygosity at the neutral locus is, from
Equation 6,

RH ¼ E
2ðu0 1 DutotÞð1� ðu0 1 DutotÞÞ

2u0ð1� u0Þ

� �
¼ 1�

ð1�e

e
e�rtðpÞdp

� �2

;

ð7Þ

where E denotes the expectation over all possible
starting conditions. This equation can be understood
from the standpoint of the set of haplotypes carrying the
beneficial allele A1. At the beginning, A1 starts in one
copy, and the haplotype that carries it harbors no genetic
diversity at other loci. During the selective sweep, di-
versity is introduced on these haplotypes through re-
combination, and the total amount of regained diversity
depends on the trajectory in time of the selective sweep,
that is, on the dynamics of A1. Note that formulated this
way, Equation 7 is quite general and applies whenever
the dynamics of the beneficial mutation are sufficiently
slow that it can be approximated by a continuous
process. Equation 7 indicates that the full trajectory of
a beneficial mutation is sufficient and necessary in-
formation for predicting its hitchhiking effect. In the
simple case studied by Maynard Smith and Haigh

(1974), the reverse dynamics is, from Equation 3,

tðpÞ ¼ 1

s
log

ð1� eÞp
eð1� pÞ

� �
; ð8Þ

which yields for the reduction of heterozygosity
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RH ¼ 1�
ð1�e

e

ð1� eÞp
eð1� pÞ

� ��r=s

dp

� �2

¼ 1� e
1� e

� �2r=s

3 B 1� e; 1� r

s
; 1 1

r

s

� �
�B e; 1� r

s
; 1 1

r

s

� �� �2
;

ð9Þ

where B is Euler’s incomplete beta function. Assuming
r > s, s > 1, and e > 1, the reduction of heterozygosity
can be approximated by

RH � 1� e2r=s; ð10Þ

which corresponds the simplest approximation pro-
posed in Stephan et al. (1992).

In this article, contrary to the usual approach for
selective sweeps (Maynard Smith and Haigh 1974;
Stephan et al. 1992), we do not define a constant
selection coefficient a priori for A1. Instead, we focus
on a mutation affecting a quantitative trait and define
selective pressure at the level of the trait only. Our aim is
to describe the dynamics of the beneficial mutation in
the presence of background genetic variation in a form
similar to Equations 2 and 3. We thus wish to identify the
factors affecting the dynamics of the mutation and to
assess the range of parameter values for which our
model converges to the classical hitchhiking model. We
also wish to characterize the molecular signature left on
neutral polymorphism by selection at a quantitative trait
locus, to understand what information is provided by
genome scans for traces of selection or hitchhiking
mapping. We mainly use a deterministic argument as in
Maynard Smith and Haigh (1974), since it allows us to
characterize major trends analytically, but our results
may be good approximations for stochastic populations
when the frequency of the beneficial mutation is neither
very low nor very high. We also discuss the qualitative
and quantitative changes that may be introduced in a
stochastic framework.

Lande’s model—simultaneous selection on a focal
gene and on background variation: We use the model
proposed by Lande (1983) to describe the effect of
selection on a focal gene affecting a quantitative trait
and on background genetic variation for this trait con-
tributed by other loci. Our aim is to predict the complete
trajectory of a beneficial mutation starting in one copy at
the focal locus (i.e., of a hard selective sweep) as a
function of the genetic and selective parameters of the
trait. For the focal locus we use the same notations as in
the previous section, with the exception that allele A1

now has an additive effect a on the trait, and no selection
coefficient is defined a priori. Lande’s (1983) model
assumes normally distributed genetic values in the back-
ground, with mean m and variance s2, which is standard
practice in quantitative genetics (Falconer and Mackay

1996). It also assumes a large population size (that is, the

model is deterministic), no linkage, and no interaction
of the focal locus with the genetic background, such that
the distribution of genetic values within each genotypic
class at locus A is also normal, with the same variance s2

as in the entire population, and the mean shifted by 0, a,
or 2a for genotypes A2A2, A1A2, or A1A1, respectively.
This latter assumption is a good approximation as long
as the number of individuals in each genotypic class is
not too small (.50, see discussion). The absolute
fitness of a phenotype with value z is W(z), and we
neglect environmental variance for the sake of clarity, so
the phenotypic and genotypic values are identical.

Lande (1983) showed that in this context, since the
distribution of genetic values is a linear combination of
identical normal distributions, the change in the mean
genetic background value m of the trait follows the same
equation as in the case of a single normal distribution.
Namely, the change in m in one generation is

Dm ¼ s2b; ð11Þ

where b ¼ @logðW Þ=@m ¼ ð1=W Þð@W =@mÞ is the gra-
dient of directional selection on the trait (Lande 1976),
which measures the slope of the log mean fitness
landscape at the position of the population. Under
random mating, the mean fitness of the population is
simply

W ¼ p2W A1A1
1 2pqW A1A2

1 q2W A2A2
; ð12Þ

where W AiAj
is the mean fitness across all genetic

backgrounds of individuals with genotype AiAj at locus
A. The change in frequency of A1 at the focal locus can
be described using Wright’s (1969) equation:

Dp ¼ pq

2

1

W

@W

@p
: ð13Þ

Note that @W =@p ¼ 2s in the classical model de-
scribed in the previous section, so Equation 1 is a
particular case of Equation 13. Lande’s (1983) model
allows describing the changes in frequencies at a gene in
a polygenic context in a simple way (without the use of
complex multigenic recursions), by combining results
from quantitative and population genetics. Note that as
long as the normal approximation holds, any locus in
the background could be the focal locus. In our context,
however, the focal locus is chosen to be one where a new
mutation has been introduced in one copy very recently.

In this article, we want to study the dynamics at the
quantitative trait locus A under contrasted forms of
selection on the trait. Indeed, there is no a priori reason
to focus on one specific type of function. Studies aiming
at estimating the shapes of fitness functions showed that
those can vary substantially between traits (Schluter

1988). Moreover, simply assessing the relative preva-
lence of directional vs. stabilizing or disruptive selection
in the wild is often difficult because of statistical issues

1648 L.-M. Chevin and F. Hospital



(Kingsolver et al. 2001). We thus chose to study three
simple cases that could induce adaptation and to use
them to compare the dynamics of selective sweeps
under markedly distinct selective pressures on the trait.
We used a linear directional fitness function (Wl), an
exponential fitness function (We), and a Gaussian
stabilizing selection (Wg). In all cases, a parameter
v . 0 quantifies the strength of selection, such that

WlðzÞ ¼ b 1 vz if z $ 0; WlðzÞ ¼ b if z # 0

WeðzÞ ¼ evz

WgðzÞ ¼ e�ðz
2=2v2Þ: ð14Þ

In the Gaussian fitness function, z is taken to be the
distance to the genetic optimum, without loss of
generality. Note that v measures the width of the bell
for the Gaussian fitness function, so the intensity of
selection increases with 1/v instead of v for this fitness
function (contrary to the other two). This notation was
used for the sake of homogeneity with standard quan-
titative genetic literature. These three examples of
fitness functions are not meant to be completely re-
alistic, but rather to encompass three clearly different
shapes, which together can well approximate many real
fitness functions in the vicinity of the current state of the
population (see discussion).

A measure of selection on a gene based on its
dynamics: The quantity used to describe the dynamics
of the mutation is the growth rate § of the ratio of allelic
frequencies r¼ p/q; that is, §¼ r9/r� 1. This approach
stems from Fisher (1930), who underlined the interest
of quantifying selection by measuring changes in the
ratio of allelic frequencies rather than in the frequen-
cies themselves, using an argument of geometric in-
crease. Note that in the limit where selection can be
approximated by a continuous process, § ¼ ð1=rÞðdr=
dtÞ ¼ d logðrÞ=dt, as in Fisher (1930, p. 34). The term §

does not change with the mean fitness of the popula-
tion, so it is often used in experimental evolution to
measure selection on genes on the basis of allele
frequency change (Lenski et al. 1991; Perfeito et al.
2007). In the simple case presented in the first section, it
also equals 1

2 ð@W =@pÞ ¼ s, but it is not always so. In the
general case, § captures the influence of parameters on
the dynamics of the beneficial mutation more accu-
rately than 1

2 ð@W =@pÞ, as we will see later. We calculated
the change in frequency Dp using Equation 13 and then
we calculated § as

§ ¼ p 1 Dp

1� ðp 1 DpÞ
1� p

p
� 1: ð15Þ

The full expression of § depends on the details of the
genetic architecture of the trait as well as on the type of
selection acting on this trait. We then used § to derive
the complete dynamics of beneficial mutations and
then to calculate the expected signature of selection on

neutral polymorphism. We focused on selection on new
mutations (i.e., on ‘‘hard’’ selective sweeps) and not on
‘‘soft’’ sweeps where a beneficial mutation that was
already segregating in the population starts being
selected after a change in the environment (Innan

and Kim 2004; Hermisson and Pennings 2005;
Przeworski et al. 2005). Soft sweeps are expected to
leave weaker and more complex signatures on neutral
polymorphism.

RESULTS

In the following, we derive the equations for the
dynamics of a mutation affecting a quantitative trait
under distinct types of selection, focusing on hard
selective sweeps, i.e., on beneficial mutations that start
in one copy and eventually reach fixation. Subscripts l,
e, and g are used throughout to refer to results obtained
under linear, exponential, and Gaussian fitness func-
tions, respectively. We also use an asterisk to denote
approximated results under the assumption that the
effect of the mutation is small relative to the mean value
of the trait; that is, that jaj> jmj.

Dynamics without background variation: We first
describe the dynamics of the mutation in the absence
of background genetic variation (s2 ¼ 0). The general
derivations are presented in the appendix. The growth
rate of the focal mutation in the absence of background
genetic variation is approximately

§*
l;s2¼0 ¼

av

b 1 mv

§*
e;s2¼0 ¼ §e;s2¼0 � av

§*
g;s2¼0 ¼ e�ðam=v2Þ � 1 � � am

v2 : ð16Þ

It can already be seen from Equation 16 that the way
selection on a trait translates into selection on a gene
affecting this trait crucially depends on the shape of the
fitness function, which was already discussed in Kimura

and Crow (1978). Under an exponential fitness func-
tion, the selective pressure on the mutation does not
depend on the mean background genetic value m,
which was emphasized in Lande (1983). In contrast,
under linear and Gaussian fitness functions, selection
on the mutation depends not only on its genetic effect a
and on parameters of the selection function (b, v), but
also on the present mean genetic state of the population
(m). Note that the influence of parameters on the
dynamics of the quantitative trait locus is captured
accurately by the term § that we use here, but not by
other definitions of the selection coefficient. For in-
stance, using 1

2 ð@W =@pÞ instead of § (by identifying
Equations 13 and 1), one could think that the mean
genetic value m influences selection at locus A even in
the case of exponential fitness function, whereas recur-
sions show that it is actually not the case (not shown).
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Our focus here is on hard selective sweeps, i.e., on new
beneficial mutations that reach fixation. Under linear
and exponential fitness functions, all mutations with
a . 0 can sweep to fixation. Under the Gaussian fitness
function, adaptation obviously takes place only if the
population is not at the optimum, that is, if m 6¼ 0. This
can occur after a recent change in the environment,
which rapidly shifted the optimal genetic value of the
trait. If so, a mutation can reach fixation if it allows the
population to get closer to the optimum, that is, if
jm 1 2aj, jmj. This is equivalent to stating that (m 1 2a)2

, m2, which leads to the condition a(a 1 m) , 0. Note
that if the mutation effect is small relative to the mean
genetic value, the only condition is that a and m have
opposite signs, as can be seen directly from §g;s2¼0*
(Equation 16).

In the absence of background genetic variation, and
assuming jaj > jmj, §s2¼0* does not change in time. We
can then write, in a form similar to Equation 3:

r ¼ r0ð1 1 §*
s2¼0Þt � r0e§*

s2¼0
t
: ð17Þ

In this context, the parameter §s2¼0* is equal to the s
defined in the classical hitchhiking model and can be
estimated by hitchhiking mapping. Moreover, using the
definition of the directional selection gradient in
Equation 11 and using the same formalism as previously,
we note that

§*
s2¼0 ¼ b*

s2¼0a; ð18Þ

for all three fitness functions. This means that, for a
given strength of selection (i.e., gradient of directional
selection) on an adaptive trait and in the absence of
background genetic variance, the strength of selection
on a weak-effect mutation affecting this trait is pro-
portional to its genetic value for the trait.

Dynamics with background variation: Changes in the
frequency of the mutation and in the mean genetic background
in one generation: In the presence of background genetic
variation for the trait (s2 . 0), the expressions for the
growth rate of r in one generation remain unchanged
under linear and exponential selection. Under Gauss-
ian stabilizing selection and assuming jaj > jmj, the
expression for §g with background genetic variation is
approximately (introducing h ¼ 1 1 s2=v2)

§*
g ¼ e�ðam=ðs21v2ÞÞ � 1 � � am

s2 1 v2 ¼
§*

g;s2¼0

h
: ð19Þ

Hence, among our chosen fitness functions, back-
ground genetic variance has a direct effect on the
change of frequency at the focal locus only in the case
of Gaussian stabilizing selection. In this case, the growth
rate of the ratio r of frequencies at the selected locus in
one generation decreases with increasing s2. With either
exponential or linear selection, background genetic var-
iance has no direct effect on the change in frequency at

the focal locus. Nevertheless, the genetic variance does
affect the dynamics of the mean genetic background
value, which in turn influences selection at the focal
locus under linear as well as under Gaussian selection. In
contrast, selection at the focal locus is never affected by
the genetic background of the trait under exponential
selection.

The change in the mean value of the trait in one
generation is given by Equation 11, where the exact
expressions for the directional selection gradients are
given in the appendix. Under the small-effect approx-
imation, these selection gradients are

b*
l ¼

v

b 1 mv

b*
e ¼ be ¼ v

b*
g ¼ �

m

s2 1 v2 : ð20Þ

Note that under this small-effect assumption, we still
find, for any generation, that §* ¼ b*a, as in the absence
of background genetic variation (Equation 18). Using a
similar small-effect approximation, Kimura and Crow

(1978) derived a formula that is close to the latter,
except that they defined the selection coefficients as
Dp=p and the effect of the gene as (1 � p)a (after
rearranging and reformulating with our notations).
Therefore their prediction was that the change in the
frequency of A1 is Dp ¼ b*apq. This is not strictly
equivalent to stating that §* ¼ b*a, which proves more
useful to calculate the complete trajectory of the
mutation as we will see below. Note that their result
can also be obtained in our case by noting that from
Equation 13, @W =@p ¼ ð@W =@zÞð@z=@pÞ � ð@W =@mÞ
ð@z=@pÞ ¼ 2ba.

Importantly, the approximate directional selection
gradients in Equation 20 are independent of the
frequency of the mutation at the focal locus, contrary
to the exact expressions presented in the appendix.
This uncouples the dynamics of the gene from those of
the mean genetic background, which allows calculating
first the trajectory in time of the mean genetic back-
ground m and then using it to derive the trajectory of the
focal mutation, using Equations 16 and 19.

Complete trajectory for a mutation of small effect: To
calculate the trajectory of the beneficial mutation A1, we
first need to know the complete dynamics of the trait. To
obtain it, we assume that the background genetic
variance remains constant over time, as in Lande

(1983). This assumption may not be very realistic on
the longer term (Turelli 1988). However, under the
infinitesimal model (i.e., for a background composed of
many loci with small effects as assumed here) it remains
a reasonable approximation over the shorter term (i.e.,
in the beginning of the sweep), and it allows a treatment
of the problem that may remain reasonably robust when
s2 changes through time. In any case, considering a
constant variance may be a conservative assumption as
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to the effects of background variation on the dynamics
of the focal locus, as we shall see in the discussion. We
also assume that jaj> jmj all along the selective sweep,
even in the case of Gaussian stabilizing selection,
although as the population approaches the optimum,
jmj may ultimately decrease to zero. We assess the
conditions that allow a selective sweep at the focal locus
to complete under stabilizing selection in the next
section.

Using Equations 11 and 20 and under the assump-
tions above, the dynamics of the mean genetic back-
ground for all three fitness functions are

m*
l ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb 1 m0vÞ2 1 2s2v2t

p
� b

v

m*
e ðtÞ ¼ m0 1 vs2t

m*
g ðtÞ ¼ m0h�t ; ð21Þ

where time 0 is taken when the mutation A1 is in the
threshold frequency e defined in Equation 6 and h ¼
1 1 s2=v2 as previously. The results for Gaussian and ex-
ponential functions [m*

e ðtÞ and m*
g ðtÞ] are exact,

whereas the one for linear selection [m*
l ðtÞ] is based

on a continuous-time approximation. With a linear
fitness function, the mean genetic value of the trait
increases as a square-root function of time; that is, it
increases more and more slowly with time. This can also
be seen from the gradient of directional selection
(Equation 20), which takes m in its denominator. This
stems from a well-known property of linear fitness
functions, which generate negative epistasis for fitness
among mutations in the same direction (see, e.g.,
Tenaillon et al. 2007); here, as m increases, there is
less and less advantage in increasing it any further.
Under exponential selection, the mean value of the trait
increases linearly with time, as a consequence of the
constant gradient of selection. Finally, under Gaussian
stabilizing selection, the absolute distance to the opti-
mum decreases exponentially with time, at rate s2/v2.

Knowing m(t), the growth rate of the ratio of allelic
frequencies can be expressed as a function of time by
combining Equations 20 and 21 and by recalling that
§* ¼ b*a, which leads to

§*l ðtÞ ¼
avffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb 1 m0vÞ2 1 2s2v2t
p

§*eðtÞ ¼ av

§*gðtÞ ¼ �
am0

v2 1 1
s2

v2

� ��ðt11Þ
: ð22Þ

This shows that the effect of background genetic
variation on the dynamics of a locus affecting an
adaptive quantitative trait crucially depends on the type
of fitness function that governs selection on this trait.
Under exponential selection, the growth rate of the
mutation is constant and independent of background
genetic variation. Under Gaussian stabilizing selection,

it decreases exponentially with time and with the
genetic variance s2. Finally, if the fitness function is
linear, it has a more complicated decreasing dynamics,
proportional to 1/sqrt(t).

In our model, as we assume no linkage and no
epistasis, there is no covariance between the focal locus
and the genetic background, so the part of variance
explained by the locus is simply 2pqa2=ðs2 1 2pqa2Þ.
This term cannot be easily related to the dynamics of the
focal mutation; for instance, it does not affect it at all
under exponential fitness function. Therefore, the
weight of a given QTL for a selected trait (defined as
the proportion of the total variance explained by the
QTL) is not necessarily a strong determinant of the
signature of selection that it will show at the molecular
level, and the absolute genetic value a of the QTL may
be more informative in that respect. Nevertheless, the
weight of the QTL may also be correlated to some extent
to the strength of the signature of selection since it is a
growing function of a.

From Equation 22, the full trajectory of the mutation
at the focal locus can be calculated using, for t . 0,

r*ðtÞ ¼ e
1� e

Yt�1

k¼0

ð1 1 §*ðkÞÞ � e
1� e

expðSðtÞÞ;

SðtÞ ¼
Xt�1

k¼0

§*ðkÞ: ð23Þ

The term S(t) is the cumulative growth rate of the
mutation A1, that is, the total amount of increase of
log(r) at time t, resulting from the action of selection
over all generations since the frequency of the A1 allele
became superior to e. For each type of fitness function
(and assuming that the dynamics for the linear fitness
function can be approximated by a continuous-time
process, i.e., replacing the sum with an integral), the
cumulated growth rate S(t) is

SlðtÞ ¼
a

b*
l;0s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 2b* 2

l;0 s2ðt � 1Þ
q

� 1
� �

SeðtÞ ¼ avðt � 1Þ

SgðtÞ ¼ �
am0

s2 ð1� h�tÞ; s . 0; ð24Þ

where b*
l;0 ¼ v=ðb 1 m0vÞ is the initial gradient of di-

rectional selection under the linear fitness function.
These expressions are compared to the product s(t� 1)
with a constant selection coefficient s. The dynamics in
Equations 23 and 24 can then be easily translated into
that of the frequency of the beneficial mutation by
noting that p*ðtÞ ¼ r*ðtÞ=ð1 1 r*ðtÞÞ, which leads to

p*ðtÞ ¼ e
e 1 ð1� eÞexpð�SðtÞÞ : ð25Þ

Figure 1 shows the approximate and exact dynamics
of the beneficial mutation under a linear fitness
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function. The presence of standing variation can sub-
stantially affect these dynamics. For instance, in Figure
1A, the time to fixation (defined by the frequency 1� e)
is tripled compared to the situation without background
variation. Even if jaj . jmj at the start of the selective
sweep, m increases with time so that the weak-effect
approximation (assuming a > m) gets better as the
selective sweep proceeds. On the contrary, under
stabilizing selection, the approximation performs well
only when m0 is substantially greater (in absolute value)
than the effect of the mutation, a (Figure 2A). Indeed, if
jaj is initially close to jmj, the approximation will worsen
as jmj decreases under selection for an optimum (Figure
2B). Note, however, that even in cases where the
approximation performs poorly, it still describes the
dynamics more accurately than assuming no back-
ground genetic variation at all.

Conditions for a complete selective sweep under stabilizing
selection: The results above were obtained assuming jaj>
jmj all along the selective sweep. However, under
stabilizing selection, m tends to 0 as the trait approaches
the optimum, so this assumption may be violated in the
course of the sweep. Furthermore, if the mean genetic
value approaches the optimum too quickly because of

the background genetic variation, the mutation at the
focal locus will obviously become deleterious and
eventually disappear from the population. To put it
another way, mutations starting in higher frequencies
(pooled here in the genetic background) will be more
likely to reach fixation first—thus reducing the distance
to phenotypic optimum—and to prevent the spread of
new mutations (represented by the focal locus). Hence
there are necessary conditions on the parameters of the
system that allow the possibility of a complete hard
sweep at the focal locus, that, is a beneficial mutation
that starts in one copy and reaches fixation. Unfortu-
nately, the range of parameters that defines these
conditions is also the one for which the assumption jaj
> jmj is not valid, so there is interdependency between
the dynamics at the focal locus and those of the mean
genetic background, which prevents us from finding an
exact solution. Nevertheless, a criterion for fixation can
be built from the approximated system of Equations 21
and 24, and its accuracy can be tested with numerical
examples. This criterion needs to be conservative (in
the sense that it must lead to a parameter range that

Figure 1.—Dynamics at the QTL under linear directional
selection. Exact recursions of Equations 11 and 13 (shaded
line) are compared to approximate dynamics using Equations
24 and 25 (dashed line) and to approximate dynamics with-
out background genetic variance (s2 ¼ 0, dotted line). The
assumption jaj > jmj was either valid from the beginning
(A) (m0 ¼ 10, a ¼ 0.1, b ¼ 1, v ¼ 0.05,
s ¼ 1, e ¼ 0.001) or initially violated (B) (m0 ¼ 0.1, a ¼ 1,
b ¼ 1, v ¼ 0.05, s ¼ 1, e ¼ 0.001). The measuring unit is
arbitrary and is scaled to v.

Figure 2.—Dynamics at the QTL under Gaussian stabiliz-
ing selection. Exact recursions of Equations 11 and 13
(shaded line) are shown together with approximate expected
dynamics using Equations 24 and 25 (dashed line) and ex-
pected dynamics without background genetic variance (dot-
ted line). The situation where the assumption that jaj > jmj
is met from the beginning (m0 ¼ 2, a ¼ �0.06, v ¼ 1, s ¼
0.1, e ¼ 0.001) is shown in A, and that where it is initially
violated (m0 ¼ 0.5, a ¼ �0.1, v ¼ 1, s ¼ 0.05, e ¼ 0.001) is
shown in B. Note that jaj cannot be very large relative to
jm0j in the presence of background genetic variation, not to
overshoot the optimum.
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bounds the actual one) and informative enough (the
obtained range must not be too large relative to the
actual range). On the basis of numerical results under
various parameter values, the criterion that we used was
that the frequency p of the mutation reaches 1

2 before
the population gets to a distance 2a of the optimum,
that is, before a(m 1 2a) becomes positive. Using the
simplified system in Equations 21 and 24 and assuming
e > 1, this leads to

s2 # � m2
0

8 logðeÞ ð26aÞ

a , � m0

4
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 8ðs2=m2

0ÞlogðeÞ
q

Þ if m0 . 0

a . � m0

4
ð1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 8ðs2=m2

0ÞlogðeÞ
q

Þ if m0 , 0;

ð26bÞ

where m0 is the initial distance to the optimum. Hence,
there is a maximum value of the background genetic
variance s2 above which the mutation cannot reach
fixation, however strong its own effect may be, because
the population reaches the optimum too quickly as a
consequence of the response to selection by the back-
ground. Importantly, this maximum value does not
depend on the intensity of stabilizing selection on the
trait, quantified by 1/v2. This is because v affects both
the dynamics of the QTL and those of the mean back-
ground genetic value in the same manner and hence
does not influence their competition. The maximum
variance that allows a complete selective sweep at the
QTL depends only on the ratio of the squared initial
distance m0 over the frequency e that determines the
beginning of the quasi-deterministic phase of the sweep.
If s2 is below this maximum value, the effect a of the focal
mutation must still be above a given threshold (in
absolute value) for the mutation to be able to spread
to fixation in the population. This threshold depends on
the ratio of the background variance over the squared
initial distance to the optimum, as well as on e, but is
again independent of v. Obviously, the initial condi-
tions must also verify the condition a(a 1 m0) , 0
mentioned earlier in the absence of background varia-
tion. Figure 3A shows an example of the threshold value
for a as a function of s. Note that this threshold tends to
infinity as s approaches its maximal value. A selective
sweep at the focal mutation can be completed only if
the background genetic variation is very low and if the
mutation effect is of the same order of magnitude as
the background genetic standard deviation, that is, if the
mutation has a very strong effect on the trait compared
to other loci. Since the chosen criterion was defined
ad hoc, we used numerical recursions to test whether it
was close to the actual conditions for a complete selective
sweep in the context of our model. The conditions

obtained under our criterion were in good agreement
with the actual behavior of the system, as shown in Figure
3, B and C. When jaj is below the threshold value defined
in Equations 26, the frequency p of the focal mutation
does not reach 1

2 and eventually decreases back to zero as
the mean background genetic value reaches the opti-
mum. In contrast, when the effect of the mutation is
slightly above the threshold (in absolute value), the
mutation manages to exceed a frequency of 1

2 and even-
tually reaches fixation (despite a slowing down of its

Figure 3.—Conditions for a complete ‘‘hard’’ sweep under
Gaussian stabilizing selection. (A) Expected values of a
(shaded area) that allow the focal mutation at the QTL to
fix in the population as a function of the background stan-
dard deviation s (parameters m0 ¼ 1, v ¼ 1, e ¼ 0.001).
The dotted-dashed line is the maximum s that allows fixation
of the mutation, from Equation 26. Dynamics of (B) the mean
value of the trait (arbitrary measuring unit, scaled to v) and
(C) the frequency p of the focal mutation A1 near the limits of
the range of parameters defined in Equation 26 are shown.
Parameters are as in A, with s ¼ 0.12 and a ¼ �0.15 (solid
line) or a ¼ �0.12 (dashed line). Expected threshold from
Equation 26: a ¼ �0.14.
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dynamics), whereas the mean genetic background goes
back down, to the value m � 2a. Hence the background
genetic variance of a trait has a strong negative impact on
the probability of a complete selective sweep at a QTL
under stabilizing selection, since it allows the population
to adapt and reach its optimum without using any new
mutation. Importantly, by assuming a constant back-
ground variance as we did in our simple model we likely
underestimated the impact of background genetic
variance on the focal locus (see discussion), so our
results (Equations 26) are conservative in that respect.

Note also that these results are based on a determin-
istic argument. In a finite population, when the muta-
tion A1 is in a very low number of copies, its frequency
will also fluctuate stochastically, so it is very likely to be
lost by genetic drift. This stochastic sieve has been
studied thoroughly, and the probability of fixation of
mutations can be calculated under various selective
contexts (Crow and Kimura 1970; Ewens 2004), in-
cluding that where there is competition between bene-
ficial mutations at several loci (Barton 1995; Gerrish

and Lenski 1998). Here, we assume that the stochastic
sieve has been passed successfully (i.e., p . e), as
mentioned earlier; hence this section focuses specifi-
cally on selective sweeps that are stopped because the
optimum phenotype was reached (m ¼ 0) through
selection at other loci, regardless of any stochastic
effects. Stochastic effects should even worsen the situa-
tion for the focal locus, as we develop in the discussion.

Signatures of selection: As shown in Equation 7, the
expected reduction of heterozygosity RH for a neutral
locus located at a recombination distance r from a locus
under positive selection can be found analytically by
calculating the integral I ¼

Ð 1�e
e e�rtðpÞdp. The obtained

pattern of neutral polymorphism can then be compared
to the one provoked by a selective sweep of constant s,
thus mimicking the empirical approach where Equation
7 is fitted to an empirical polymorphism pattern to infer
the selection coefficient s (assumed constant). This
estimated s can be thought of as an ‘‘effective selection
coefficient’’ se for the hitchhiking effect in a context of
varying selection coefficient, i.e., the constant value of s
that would lead to the same signature of selection as the
one observed. Using the approximated Equation 10,
this leads to

se ¼ r
logðeÞ
logðI Þ : ð27Þ

Unfortunately, when replacing tðpÞ with the inverse
dynamics obtained from Equation 7, the resulting
integral I cannot be solved. Alternatively, we can numer-
ically compute the increase of polymorphism through
recombination on the haplotype that carries the bene-
ficial mutation. This is done by using the exact or
approximated dynamics for the selected locus (Equa-
tions 24 and 25) and then converting them into the

change in frequency at the neutral locus using Equation
4. The final polymorphism pattern can then be com-
pared to an expected pattern assuming a constant
selection coefficient, for instance, by fitting Equation
10 to the heterozygosity pattern. Figure 4 shows an
example of such an estimation of the effective selection
coefficient under Gaussian stabilizing selection (based
on Equation 27). The actual and fitted polymorphism
curves are shown in Figure 4A. The pattern of reduction
of heterozygosity RH with a changing selection coeffi-
cient (implied by the Gaussian stabilizing selection with
background genetic variance) is quite similar to that
expected under a constant selection coefficient. As seen
in Figure 4B, the actual selection coefficient decreases
exponentially with time, as is also apparent from Equa-

Figure 4.—Effective selection coefficient se for the hitch-
hiking effect, under Gaussian stabilizing selection. (A) Ex-
pected reduction of heterozygosity rH plotted against the
recombination rate with the locus under selection, in a selec-
tive sweep at a QTL with background genetic variation, under
stabilizing selection. Expected pattern (shaded line) and fit-
ted pattern under the assumption of a constant selection co-
efficient are shown. (B) Actual and estimated selection
coefficients. Exact recursion (shaded line) and approximate
value using Equation 22 (dashed line) for the growth rate § of
the mutation are shown. The dotted line denotes the effective
selection coefficient estimated by fitting the approximated
formula in Equation 10 to the expected heterozygosity pat-
tern. The dotted-dashed shaded line is the mean selection co-
efficient estimated by the composite-likelihood method of
Kim and Stephan (2002) on 100 coalescence simulations
of selective sweep with a decreasing selection coefficient fol-
lowing Equation 24. Parameters are the same as in Figure
2A, except e ¼ 1/(4Neso) with Ne ¼ 10,000 and so ¼ �amo/
(s2 1 v2).
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tion 24. The selection coefficient se estimated through
the reduction of heterozygosity corresponds to the s in
the early phase of the selective sweep, as expected.
Indeed, the hitchhiking effect is mostly concentrated in
the beginning of a selective sweep, when the mutation is
in low frequency (Barton 1998). Yet this ‘‘effective’’
selection coefficient is substantially lower than the initial
selection coefficient (about half of its value in our
example).

Since the above results neglect the mutation events at
the neutral locus during the selective sweep, we also ran
coalescence simulations of a selective sweep with a
decreasing selection coefficient. To do so, we modified
the program ‘‘ssw’’ by Yuseob Kim (available online at
http://yuseobkim.net/YuseobPrograms.html), by replac-
ing the expected trajectory of the beneficial mutation
with the approximate dynamics of Equations 24 and 25.
We then applied Kim and Stephan’s (2002) composite-
likelihood-ratio test to estimate the selection coefficient
involved in the selective sweep. This method uses the
site-frequency spectrum (SFS) of neutral mutations (i.e.,
the proportion of mutations that are found at each
frequency in a sample) to infer parameters of a selective
sweep together with the (composite) likelihood of se-
lection vs. neutrality. As seen in Figure 4B, the selection
coefficient thus estimated is far below the se predicted
through the reduction of heterozygosity and neglecting
mutation during the selective sweep. This is because a
decreasing selection coefficient induces the mutation A1

to remain at high frequencies for a longer time before it
can fix. During this time lapse, (i) mutation restores
some of the neutral genetic diversity in the population
and (ii) genetic drift causes very frequent neutral var-
iants to fix, thus decreasing their proportions in the SFS.
Hence at the time of fixation of the beneficial mutation,
the selective sweep looks older than a selective sweep
with a constant s. We also used another method in which
the likelihood-ratio test is calculated from the linkage
disequilibria between neutral sites (Kim and Nielsen

2004). Specifically, this method detects a peculiar pat-
tern of linkage disequilibrium generated by complete
selective sweeps, in which the linkage disequilibrium is
strong between loci located on the same side of the
selected locus, but is very low between loci located on
each side of the selected locus (Kim and Nielsen 2004;
Stephan et al. 2006). However, this method failed to
detect selection in our example, because the linkage
disequilibrium was quickly broken down at the end of
the selective sweep (not shown).

DISCUSSION

We studied the dynamics of a beneficial mutation at a
gene affecting a quantitative trait that also harbors
background genetic variance contributed by other loci.
To do so, we used a purely deterministic model in the
range of allelic frequencies where stochastic effects can

be neglected. We showed that, if the effect of a mutation
at the focal locus is small relative to the mean genetic
background value of the trait, the full trajectory of the
mutation (and of the mean background) can be derived
under various fitness functions and related to the
genetic and selective parameters of the trait. We also
found conditions for a complete selective sweep at a
quantitative trait locus under stabilizing selection. The
selection coefficient of the beneficial mutation de-
creases in time because of background genetic variance
under two of the three fitness functions studied (linear
and Gaussian). The deterministic reduction of hetero-
zygosity at a linked neutral locus is mostly influenced by
the selection coefficient in the early generations of the
selective sweep, as expected from Barton (1998), but
the effective selection coefficient for the hitchhiking
effect can be much lower than the one at the starting
conditions.

In the following, we first discuss the limits of the
model that we used and the robustness of our results to
departures from our assumptions, and then we discuss
some possible improvements and applications.

Potential limits of the model: In this study, we
neglected the possible changes in the variance of the
trait for the sake of clarity. In fact, selection modifies the
genetic variance of the population at each generation
following Ds2 ¼ 1=2s4ðg� b2Þ, where the gradient of
quadratic selection on the trait g measures the mean
curvature of the adaptive landscape experienced by the
population (Lande and Arnold 1983). Genetic drift
decreases the genetic variance at rate (1� 1/(2Ne)) per
generation, whereas mutation increases it by an amount
V 2

m. The combined effect of all these factors on the
change in variance depends on the parameter values
and on the type of selection (fitness function) operating
on the trait. However, assuming a constant variance may
be a good approximation in the short term, i.e., in the
early generations of the selective sweep where the
hitchhiking effect is strongest. Moreover, under stabiliz-
ing selection, and assuming that the population was at
mutation–selection–drift equilibrium before the envi-
ronmental change—that is, it remained at the optimum
for many generations—Burger and Lynch (1995)
showed that the environmental change actually in-
creases the variance of the trait under selection (see
their Figure 6). Hence, if the population was at equilib-
rium prior to the environmental change (which seems a
reasonable assumption), our results obtained with a con-
stant variance are conservative and actually underesti-
mate the reduction of the selection coefficient of a new
mutation affecting a quantitative trait due to selection
on the genetic background of this trait.

As explained in the text, the fitness functions used
here were chosen for illustrative purposes, but also
because they can be good approximations to real fitness
functions in the vicinity of the present state of a
population. The linear and Gaussian fitness functions
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are widely used to describe directional and stabilizing
selective pressures on traits, respectively, because of
their simplicity and because they are good approximates
to more complicated functions under a wide range of
parameter values (see Lande 1976 for a discussion of the
Gaussian approximation for general stabilizing selec-
tion). The exponential fitness function is less frequent
in models of directional selection as it seems more
extreme than the linear one (but see Lande 1983). Its
prevalence in natural populations is difficult to assess,
since it has rarely been tested explicitly on empirical
data. Nevertheless Schluter (1988), using a nonpara-
metric approach, demonstrated empirically that expo-
nential-like fitness functions occur in natural populations.
Moreover, these functions have the interesting property
that they combine a strong positive slope (gradient of
directional selection) with a positive curvature [positive
quadratic selection gradient (Lande and Arnold 1983)].
Since a positive curvature is in general interpreted as a
sign of disruptive selection, finding this feature together
with a strong directional gradient may seem like an
empirical paradox. Schluter (1988) emphasized that
such a pattern may very well be caused by exponential-
like fitness functions. This type of fitness function may
thus be important in the study of evolutionary biology
and is also quite illustrative, so we considered it as well.

Also, we assumed that the distribution of background
genetic values was the same in every genetic class at the
QTL. However, in a finite population, even a very large
one, when the frequency of the beneficial mutation is
very low (or very high), the number of individuals in a
particular genotypic class at the focal locus is small, so this
class may harbor a background genetic variance different
from those of the other genotypic classes. This is an
important stochastic factor, since a new mutation may be
associated by chance to very beneficial or very deleterious
alleles at other loci, instead of experiencing all possible
genotypic values at other loci. This can be accounted for
by noting that the background genetic variance in a
genotypic class of n individuals is distributed like the
sample variance for a sample of size n (since we assume
no linkage and no epistasis). Its expectation is (n � 1)/
ns2, which for large n tends to s2, the variance of the
entire population, and its coefficient of variation (i.e., the
standard deviation divided by the mean) is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðn � 1Þ

p
, a

decreasing function of n. This coefficient of variation
depends only on the number n of individuals in the
genotypic class, regardless of the total population size.
We can thus define na ¼ ð2 1 a2Þ=a2 as the threshold
number of individuals in a given genotypic class at locus
A, above which the coefficient of variation of the
background genetic variance is below a tolerance level
a. The definition of e in Equation 7 can be extended to
represent the frequency above which not only do the
dynamics become quasi-deterministic without back-
ground variation (Stephan et al. 1992), but also all
genotypes harbor background genetic variances close

to that in the entire population (that is e . na/N,
where N is the population size).

Another stochastic effect that might matter in the
competition between several loci affecting the trait is the
reduction of the effective size of the population. Indeed,
selection decreases the effective population size by cre-
ating variance in family size (Santiago and Caballero

1995), thus reducing the efficacy of selection. Since the
most frequent alleles contribute most to the genetic
variance in fitness (all other things being equal), they
also have the strongest effect in decreasing the effective
population size for other loci. Hence they should ex-
perience a positive feedback that further increases their
deterministic advantage of starting at higher frequen-
cies. A comprehensive treatment of this stochastic compe-
tition between unlinked mutations is worth investigating,
but it is beyond the scope of this article.

Finally, we have assumed that the focal locus is
completely unlinked to the loci in the genetic back-
ground and that there is no epistasis between the locus
and its genetic background for the trait considered. Yet,
epistatic interactions for quantitative traits (defined as
departures from additivity) have been repeatedly re-
ported in QTL analyses (Carlborg et al. 2003; Kroymann

and Mitchell-Olds 2005). Epistasis could affect our
results by modifying the mean effect of the mutation
over all the genetic backgrounds, thus changing a in our
model. However, there is no reason to think that epistasis
is systematically biased toward positive or negative values,
such that the pooled effect of all loci in the background
would result in a systematic decrease or increase of a.
Hence as far as each genotype at the focal locus is
represented by many individuals, and the genetic back-
ground consistsof many loci, epistatic interactions should
sum up to zero. Linkage is difficult to incorporate in the
framework that we used; it would introduce partial co-
variance between the focal locus and the genetic back-
ground, resulting in an apparent bias for a. Contrary to
epistasis, this bias may be sustained over several gener-
ations, which may influence the outcome of the selective
sweep. In any case, the presence of a second selective
sweep in the vicinity of the focal selective sweep may
substantially affect the polymorphism pattern in the
region as compared to a single selective sweep (Chevin

et al. 2008). Therefore, the present model is a priori best
suited for fully sexual species and traits for which QTL
are spread over the genome.

Potential developments and applications: In practice,
both the focal mutation and the genetic background may
affect several traits under selection. Pleiotropy can alter
predictions regarding selection at the focal locus based
on a single character (Otto 2004), and genetic cova-
riances in the background can lead to changes of the
mean genetic value of the focal trait as an indirect con-
sequence of selection on other traits (Lande 1979).Multi-
variate approaches are nowa standard tool in evolutionary
genetics (Walsh 2007) and have been applied recently
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to relate the phenotypic effect of pleiotropic mutations
to their fitness effects, in the absence of background
genetic variation (Martin and Lenormand 2006a). To
understand how selection affects pleiotropic mutations
in the presence of other polymorphic loci, our approach
may be generalized by treating the focal mutation as a
vector of effects on several traits, in the presence of a
background genetic variance–covariance G-matrix, as in
Agrawal et al. (2001). Even in this context, the simple
results presented here may be good approximations in
cases where the focal mutation has unbalanced effects
and influences mainly one trait (low effective dimen-
sionality) and where there is little background genetic
covariance between this trait and other traits under
selection.

Our results may have important implications regard-
ing the methods used to detect signatures of selection.
Teshima and Przeworski (2006) showed that domi-
nance can modify the trajectory of a beneficial mutation
(relative to the case of additive selective advantage) in a
way that dramatically influences the signature that a
selective sweep leaves on neutral variation. In our gen-
eral context, background genetic variance can provoke
a significant decrease in the selection coefficient over
time. Note that a decrease of the selection coefficient, as
described here under linear or Gaussian fitness func-
tion, may also occur under other types of fitness func-
tions, for instance, those that increase until they reach a
‘‘plateau.’’ When we considered only the reduction of
heterozygosity and neglected neutral mutations during
the selective sweep, the two types of signatures (constant
selection coefficient or decreasing selection coefficient)
were barely distinguishable, but the effective selection
coefficient in the case of a decreasing s was inferior to
the initial s. When we included mutation during the
selective sweep and looked at the frequency spectrum of
mutations, the selection coefficient estimated was much
lower, and we failed to detect selection through its effect
on linkage disequilibrium. Hence at the time the bene-
ficial mutation reaches fixation, a selective sweep with
decreasing selection coefficient is very similar to an old
selective sweep. In this context, it may thus be more
efficient to use methods that search for an ongoing
selective sweep (as in, e.g., Voight et al. 2006), since the
methods that assume that the beneficial mutation is
fixed may have a low power as a consequence of the
decrease of the selection coefficient in time. It may also
be possible to estimate the decrease of the selection co-
efficient of a mutation. This could be done, for instance,
by modifying methods that jointly infer the selection
coefficient and the age of a selected sweep, such as that
of Przeworski (2003).

Conclusion: There has been marked interest recently
in the population genetic theory of adaptation. Besides
the theoretical developments stemming from Fisher’s
geometrical model (Orr 2005), experimental evolution
with microbes (Elena and Lenski 2003) provides exam-

ples of how adaptation proceeds in controlled labora-
tory conditions. Specifically, empirical estimates of the
distribution of the fitness effects of mutations (reviewed
in Eyre-Walker and Keightley 2007), and in particu-
lar of beneficial ones, aim at quantifying the raw material
for adaptation. However, the applicability of fitness
effects measured in the laboratory to natural popula-
tions has been questioned only in a few studies to date. It
is not clear whether the selection coefficients estimated
under specific controlled conditions can be directly
translated into another context. Fundamentally, the
underlying questions are as follows: Can we assign a
constant selection coefficient to a given mutation? And
if not, to what extent is this selection coefficient de-
termined by other factors?

First, the environment that the population experien-
ces affects the fitness effect of a mutation. Using a
multivariate model of stabilizing selection and com-
paring it with data from the literature, Martin and
Lenormand (2006b) showed that the effect of a change
of environment on the distribution of fitness effects of
mutations follows a predictable trend. The selection
coefficient of a mutation may also depend on the genetic
environment in which it occurs. Most empirical studies
of the distribution of the fitness effects of mutations
focus on single mutations in a given reference back-
ground (Eyre-Walker and Keightley 2007), so that
they are only informative about the process of adapta-
tion from rare de novo mutations where only one mu-
tation can sweep at a time. When several mutations
segregate simultaneously at several loci, it is not clear
what their selection coefficients will become, i.e., what
the effect of a variable genetic background is on allele
frequency changes. Theoretical predictions (Martin

et al. 2007), confirmed by experimental results (Elena

and Lenski 1997; Sanjuan et al. 2004), indicate that
epistasis for fitness between pairs of mutations can be
substantial. In sexual species with smaller population
sizes, such as higher eukaryotes, quantitative traits under
selection can exhibit substantial variation caused by
many loci (Falconer and Mackay 1996; Barton and
Keightley 2002). In such a situation, the selection
coefficient of an allele, defined either at the locus level
only or as a departure from the mean fitness of the
population (as in Kimura and Crow 1978 or Barton

and Turelli 1991), can be informative only about
selection acting in one generation. The actual dynamics
of a mutation all along its trajectory are more complex.
As we show here with a simple model, the dynamics of a
beneficial mutation affecting a quantitative trait under
selection depend not only on its own effect, but also on
the mean and variance of the genetic background for
the trait and on the strength of selection on this trait.
Moreover, the relative importance of each of these
parameters crucially depends on the shape of the
adaptive landscape. In any case, the selection coefficient
that matters for the dynamics of a gene cannot be related
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in a simple manner to the proportion of genetic variance
explained by this gene [a quantity often used to quantify
the QTL effect in empirical studies (Lynch and Walsh

1998)].
To better understand the meaning of molecular

signatures of selection in humans or in model species
of higher eukaryotes (such as fruit flies, Arabidopsis,
etc.), it is thus essential to empirically assess how
adaptation proceeds in those species. If the model of
periodic selection (Atwood et al. 1951; Elena et al.
1996) applies, then theoretical results from the popula-
tion genetics of adaptation and experimental evolution
on microbes can be helpful in understanding adapta-
tion in those species, too. In contrast, if the response to
selection is essentially multigenic, selection at specific
loci may strongly vary in time and depend on the
background genetics of the trait. If so, the effective
selection coefficient for molecular signatures of selec-
tion would be only partly informative about the actual
advantage of the mutation while it segregated in the
population. Moreover, some types of selection on traits
(i.e., shapes of the fitness function) would be over-
represented in detectable selective sweeps, such that
some categories of adaptive traits would be systemati-
cally missed by genome scans. On the other hand,
specific models of phenotypic selection such as the ones
proposed here provide alternative null models of vari-
able selection coefficients that could be tested with
molecular data.
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APPENDIX

In this appendix, we derive the exact and approximate dynamics of the frequency p of the A1 mutation at the focal
locus and of the mean genetic background value m.

We first calculate the mean fitness in the population under the three fitness functions. The mean fitness of each
genotypic classe AiAj is

W AiAj
¼
ð‘

�‘

W ðzÞf ðz � ðm 1 aij aÞÞ dz;

where f(.) is the Gaussian distribution with mean 0 and variance s2 and aij ¼ 2 if {i, j} ¼ {1, 1}, aij ¼ 1 if {i, j} ¼ {1, 2} or
{1, 2}, and aij ¼ 0 if {i, j} ¼ {2, 2}. Then the mean fitness in the population is, according to Equation 12,

Wl ¼ b 1 vðm 1 2apÞ
We ¼ emv1ðs2v2Þ=2ððeav � 1Þp 1 1Þ

Wg ¼
p2e�ððm12aÞ2=2ðs21v2ÞÞ1 2pqe�ððm1aÞ2=2ðs21v2ÞÞ1 q2e�ðm

2=2ðs21v2ÞÞffiffiffi
h
p ; ðA1Þ

where q ¼ 1 � p and h ¼ 1 1 ðs=vÞ2. The change in frequency of the allele A1 can be calculated using Equation 13,
which gives
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Dpl ¼
av

b 1 ðm 1 2apÞv pq

Dpe ¼
eav � 1

ðeav � 1Þp 1 1
pq

Dpg ¼
p 1 ðq � pÞeað3a12mÞ=2ðs21v2Þ � qe2aða1mÞ=ðs21v2Þ

p2 1 2pqeað3a12mÞ=2ðs21v2Þ1 q2e2aða1mÞ=ðs21v2Þ
pq

2
: ðA2Þ

The growth rate of the ratio of allelic frequencies r ¼ p/q can then be found following Equation 15, which, after
some rearrangement, leads to

§l ¼
av

b 1 ðm 1 apÞv
§e ¼ eav � 1 � av

§g ¼
p 1 ð1� 2pÞeað3a12mÞ=2ðs21v2Þ � ð1� pÞe2aða1mÞ=ðs21v2Þ

peað3a12mÞ=2ðs21v2Þ1 ð1� pÞe2aða1mÞ=ðs21v2Þ : ðA3Þ

Under linear and Gaussian fitness functions, the dynamics are slightly frequency dependent, since p is present in the
expression of §. Note that it is also the case in the classical selection model (see Equation 2). We now introduce an
approximation for mutations of small effects (similar to considering s > 1 in Equation 3). This consists in considering
that the effect of the focal mutation on the trait, a, is small relative to the mean background genetic value of the trait
(discounting the effect of the mutation), m. The results obtained under this approximation are denoted by an ‘‘*’’ in the
rest of this article. When jaj> jmj (where ‘‘j j’’ denotes the absolute value), the growth rate of the focal mutation becomes

§*
l ¼

av

b 1 mv

§*
e ¼ §e;s2¼0 � av

§*
g ¼ e�ðam=ðs21v2ÞÞ � 1 � � am

s2 1 v2 ; ðA4Þ

which is now independent of the frequency p of the mutation. Note that only in the case of Gaussian selection does the
selection coefficient in one generation depend on the background genetic variance s2.

The change in the mean background value is controlled by the gradient of directional selection on the trait, as
shown in Equation 11. Using the expressions for the mean fitness in (A1), those gradients are

bl ¼
v

b 1 ðm 1 apÞv
be ¼ v

bg ¼ �
p2ðm 1 2aÞe�ððm12aÞ2=2ðs21v2ÞÞ1 2pqðm 1 aÞe�ððm1aÞ2=2ðs21v2ÞÞ1 q2me�ðm

2=2ðs21v2ÞÞ

ðq2e�ðm
2=2ðs21v2ÞÞ1 2pqe�ððm1aÞ2=2ðs21v2ÞÞ1 p2e�ððm12aÞ2=2ðs21v2ÞÞÞðs21v2Þ

: ðA5Þ

In the case of exponential selection, the directional selection gradient is constant and depends neither on the
frequency of the mutation at the focal locus nor on the mean genetic background or the amount of genetic variance
for the trait. In contrast, for the linear and Gaussian fitness functions, the selection gradient depends on the frequency
p of the focal mutation. There is thus complete interdependency between the dynamics of the focal mutation and that
of the genetic background for the trait: (i) the focal mutation influences the mean fitness W , which changes the
selective pressure on the trait (b), and (ii) the change in the mean background genetic value m changes the dynamics
of the mutation, characterized by the relative growth rate §. Therefore, there is no simple solution to the full system of
equations. Nevertheless, under the small-effect assumption (jaj> jmj) the gradients of directional selection become

b*
l ¼

v

b 1 mv

b*
e ¼ be ¼ v

b*
g ¼ �

m

s2 1 v2 ; ðA6Þ

which are all independent of the frequency of the A1 allele. This allows calculating the trajectory in time of the mean
genetic background m first, and then using it to find the full dynamics of the beneficial mutation at the focal locus.
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