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Abstract The basic principle of Marker-Assisted Selec-

tion (MAS) is to exploit Linkage Disequilibrium (LD)

between markers and QTLs. With strong enough LD, MAS

should in theory be easier, faster, cheaper, or more efficient

than classical (phenotypic) selection. I briefly review the

major MAS methods, describing some ‘success stories’

where MAS was applied successfully in the context of

plant breeding, and detailing other cases where efficiency

was not as high as expected. I discuss the possible causes

explaining the difference between theoretical expectations

and practical observations. Finally, I review the principal

challenges and issues that must be tackled to make marker-

assisted selection in plants more effective in the future,

namely: managing and controlling QTL stability to apply

MAS to complex traits, and integrating MAS in traditional

breeding practices to make it more economically attractive

and applicable in developing countries.
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DNA markers � Quantitative trait loci � Linkage
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Introduction

One may wonder why the effectiveness of Marker-Assisted

Selection (MAS) is still challengeable in the year 2007,

while the basic idea of using (molecular) markers to aid in

selection breeding programs is probably as old as the idea of

QTL detection (see J. B. Walsh, this issue). In fact, a quick

literature survey shows that the number of bibliographic

references containing any MAS-related keyword started to

explode in 1990—just after the publication of one of the first

‘modern’ QTL studies (Paterson et al. 1988)—and then

regularly increased up to 337 per year in 2007 (source: ISI

Web of Knowledge, search limited to articles in English).

Note, however, that very often MAS is only mentioned as a

future perspective of QTL or molecular studies, even in the

most recent publications… To my knowledge, the earliest

references to MAS are by Neimann-Sorenson and Robertson

(1961) and Smith (1967), followed by a series of well known

and often cited papers in the late 70s and early 80s (Soller

and Plotkinhazan 1977; Soller 1978; Soller and Beckmann

1983; Beckmann and Soller 1983; Tanksley and Rick 1980;

Tanksley et al. 1981; Stuber 1982). The latter two references

are notable in that they supposedly refer to the first real MAS

experiments. As stated earlier (J. B. Walsh, this volume),

availability of numerous enough markers was one of the

main limitations to the development of modern QTL studies.

Technical as well as theoretical developments have removed

this limitation in the past 15 years, and now the results of

numerous QTL detection experiments in various species are

available. So, having found the QTLs, surely MAS should

be readily effective?

Before we go further, let us recall briefly MAS princi-

ples, methods, and expected advantages. The basic

principle of MAS is to exploit Linkage Disequilibrium

(LD) between markers and QTLs, i.e. the fact that marker

alleles are not randomly associated with QTL alleles. If

there is strong enough LD, then one can select (directly) on

the markers in order to (indirectly) increase the frequencies

of linked QTL alleles of interest. Compared to classical

(phenotypic) selection, MAS should then be: (i) easier

(e.g., when phenotypes are difficult to record); (ii) faster
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(when phenotyping is long, e.g., progeny testing; also,

MAS permits selection at an early stage of development);

(iii) cheaper (if the cost of genotyping is lower than the cost

of phenotyping); and finally (iv) more efficient (because

‘heritability’ at the marker itself (not the linked QTL) is 1

if there is no genotyping error). Though items (i) to (iii) are

not really in question and mostly depend on biological or

technical particularities of the species and/or breeding

scheme considered, the increased ‘efficiency’ (not herita-

bility) in item (iv) is more in doubt, because the ultimate

goal of selection is obviously not the marker itself, but

rather the linked QTL, or even better the trait. Thus, a good

efficiency of MAS presupposes that LD between markers

and QTLs does not vanish, and that QTL effects are well

estimated and sustained (e.g. over time, or environmental

conditions). The latter is indeed a more controversial

matter, and in fact the basis of the current paper.

It is noteworthy that in this paper the ‘efficiency’ of

MAS is considered from a breeder’s point of view. One

may wish to use molecular techniques to help decipher the

genetic architecture of complex traits for the purpose of

obtaining fundamental knowledge. In such a case, the cost

of the information provided by markers does not matter

much (in the limits of available research grants). But, the

picture is different from an applied breeding point of view,

because selection methods have already existed for a long

time, based on the record of phenotypic performance in

more-or-less sophisticated designs, combined with more-

or-less sophisticated statistical analyses. If such methods

were not effective already, surely plant and animal breed-

ing would not have been so successful in the past century.

Hence, from a breeder’s point of view, MAS must not only

be efficient, but more efficient than already available

breeding methods on an economical scale, i.e. when

comparing return to investment. Thus, one must keep in

mind that we are always comparing the efficiency of MAS

to that of standard phenotypic selection.

Moreover, we focus in this paper on MAS in plants

(except trees), and note that plant populations and breeding

practices present a number of differences from those used

with animals. Plant populations are in general inbred, as

opposed to outbred, which means that variation is rather

more between populations (or between lines) than within

populations. Plant populations exhibit in general larger

effective population sizes (Ne), which provide possibly

more power for QTL detection, more selection intensity,

but also a faster decrease of LD with recombination rate.

Conversely, the samples studied are in general smaller than

in animal breeding, which gives less accuracy for QTL

detection, and environmental variation is higher. Finally,

an important and useful property of most plant species is

that they allow self-mating to produce fixed inbred lines

that can later be used in replicated trials.

A so-called ‘genealogical’ plant breeding scheme typi-

cally starts with a bi-parental cross (between two inbred

lines), followed by the rapid fixation of progenies by repe-

ated selfing, then selection of the best(s) progeny line(s).

Such lines may be released in the production process if of

good enough agronomic value, and/or intercrossed with

line(s) selected from other bi-parental crosses to pursue the

selection process further. Such schemes generally involve

multiple starting bi-parental crosses with small progeny

samples, and strong selection intensity. As we will see

further, such traditional plant breeding practices are con-

tradictory to optimal molecular breeding conditions, which

poses the first challenge to the efficiency of MAS.

Major MAS breeding methods include the following: (i)

Marker-Assisted Introgression (MAI) or Marker-Assisted

Back-cross (MAB), where one gene from a donor line is

introgressed into the genetic background of a recipient

parent by repeated back-crossing to the recipient parent.

Here, markers are used either to control the presence of the

target gene and/or to accelerate the return of background

genome to recipient type. (ii) The simple screening of

populations (e.g. F2, F3, Recombinant Inbred Lines,

Doubled Haploids, …) for genotypes of interest based on

markers (population screening). (iii) Gene Pyramiding

schemes, where two (or more) parent line(s), each hosting

one (or more) gene(s) of interest are crossed, then the

offspring population is screened for individuals carrying

both (all) genes of interest. The process can be iterated

further to combine more genes. More complex methods

are: (iv) Marker-Based Recurrent Selection (several gen-

erations of selection on markers with random mating), and

finally (v) selection on an index combining molecular and

phenotypic score.

Success stories

Success stories in Marker-Assisted Selection, i.e. success-

ful experiments published so far, were obtained essentially

from methods (i) to (iii) above.

Marker-assisted back-cross breeding (MAB) is always

successful, except of course when the effect of the target

gene is unstable (e.g. a QTL of low effect on a complex trait,

see below). This method has been a matter of many theo-

retical optimization studies, and the efficiency of selection

on markers to accelerate the return to background genome is

one of the best examples where selection experiments meet

theory. MAB is routinely used, especially in private com-

panies (but those works are most often unpublished).

Examples of commercially released genetic material

include for example Patwin (Hard White Spring wheat), the

first variety developed by MAS released by the University of

California at Davis (http://www.plantsciences.ucdavis.edu/
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plantbreeding/main/history.htm), which contains the intro-

gressed stripe rust resistance gene Yr17 and leaf rust

resistance gene Lr37 (Helguera et al. 2003).

Population screening is almost always successful, as

anticipated, and does not request much of theoretical

optimization when screening only in one generation (i.e.

not intercrossing the selected individual in recurrent

selection schemes).

Ashikari et al. (2005) provide a good example of suc-

cessful gene pyramiding experiments. First, the

introgression of one QTL for grain number and one QTL

for plant height separately in the same genetic background

improved both traits. Second, the lines generated by pyr-

amiding both QTLs in the same genetic background

exhibited trait values slightly lower than expected based on

single introgression lines, but overall the addition of

genetic loci was still beneficial and permitted improvement

of the yield of a strain of rice.

There are many other successful examples in numerous

species, including: pyramiding of Xa7 and Xa21 for the

improvement of disease resistance to bacterial blight in

hybrid rice (Zhang et al. 2006); marker-assisted pyramid-

ing of two cereal cyst nematode resistance genes from

Aegilops variabilis in wheat (Barloy et al. 2007); micro-

satellite-assisted backcross selection in maize (Benchimol

et al. 2005); development of uniform double-crossed

varieties using near-isogenic lines produced by marker-

assisted selection in radish (Park et al. 2007); and evalua-

tion of leaf rust resistance genes Lr1, Lr9, Lr24, Lr47 and

their introgression into common wheat cultivars by marker-

assisted selection (Nocente et al. 2007).

Other stories

In some cases MAS is not as efficient as expected. Most of

the time, this depends on how stable are QTL effects, which

may be altered in different ways. In some cases, the QTL

effect ‘vanishes’ after MAS or introgression (Shen et al.

2001). One can then wonder whether the QTL was a false

positive (‘ghost QTL’), or a true positive for which the effect

(expression) depended on one or several of the interactions

listed below. There is also a tendency for supposedly

‘additive’ QTL effects not to really sum up! One example

was given above for two traits. The same phenomenon was

observed for QTLs for a single trait and coined ‘less than

additive epistasis’ by Eshed and Zamir (1996). More gen-

erally, many sources of negative interactions may reduce the

efficiency of MAS. Either QTL 9 QTL, QTL 9 Genetic

background, and/or QTL 9 Environment interactions may

reduce QTL effects after MAS compared to what was

expected from single-gene effects (see also Jannink et al. this

volume). Those can even obliterate the QTL effect (in which

case it may look like a false positive), or even invert it (as was

observed by Bouchez et al. 2002 for grain yield in maize).

At this stage, a remark about epistasis is necessary.

Epistasis may be more general than originally thought

(based on strong influence of the linear model in Quanti-

tative Genetics), see for example T.F.C. Mackay (this

volume). Epistasis is very difficult to detect, so in general it

is difficult to prove its influence. But from a general point

of view, it is worth noting that epistasis can have very

contrasting consequences. On the one hand, epistasis may

sometimes completely annihilate the response to MAS.

Conversely, in other cases, MAS could sometimes be the

only way to select for favorable epistatic combinations

(once they are identified) as demonstrated by Ahmadi et al.

(2001) for resistance to yellow mottle virus in rice. In such

cases, MAS is very rewarding.

Finally, the issues on QTL stability can be nicely sum-

marized through the results of a series of marker-assisted

introgression experiments for QTLs controlling fruit qual-

ity traits in tomato (Lecomte et al. 2004; Chaib et al. 2006;

Causse et al. 2007). In a Recombinant Inbred Line (RIL)

population derived from the line cross C 9 L, they

detected five QTL regions involved in the genetic variation

of numerous traits associated with fruit quality. These

QTLs were introgressed into the L, B, and D lines back-

grounds by a Marker-Assisted Backcross scheme that

produced BC3S1 lines having one to five QTLs. This nice

design permits checking of interactions between QTLs,

between QTLs and background, and of the effect of the

environment and population. The results indicate that over

the years and progenies (i.e. the RIL versus BC3S1 pop-

ulations, having different genetic structure and being

grown in different years), approximately 60% of the QTLs

were stable (18/30, all traits together), and 20% were no

longer detected, which can be due to environmental or

epistatic interactions. In addition, they observed 20% ‘new’

QTLs in the BC3S1 population that were not detected in

the RIL population, which can be due to dominance. One

original feature of these studies is that QTLs were intro-

gressed in three different genetic backgrounds: one (L) was

a parent of the original cross that produced the RIL pop-

ulation where the QTL detection took place, which is the

classical case, and two other backgrounds (B and D) were

‘new’, in that the QTL effects were never estimated in

these backgrounds. When considering the stability of the

QTLs between the genetic backgrounds, comparison of

background L. vs. B indicated that 53% (16/30) of the

QTLs were stable, 23% were no longer detected in the new

background, and 23% were new (new allelic differences).

The picture was approximately the same for the other

comparison (L vs. D). Finally, comparing lines that were

introgressed for different numbers of QTLs, the results

indicate that, although a large part of the genetic variation
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for the six traits was under additive control, interactions

between QTLs leading to epistatic effects were common.

All the significant epistatic interactions had a sign opposite

to those of the additive effects (‘‘less than additive epis-

tasis’’), and epistasis frequently involved a region where

main effect QTLs had been detected.

State of the art and future challenges

As a preliminary conclusion on this on-going research

topic, we can first identify clear-cut cases where the value

of MAS is not questionable. Those are the cases where

MAS, compared to classical phenotypic selection, either (i)

provides an increased genetic gain per unit of time, which

is the case when MAS permits selection at DNA level at an

early stage in the development and/or when it permits

reduction of the generation interval (most trees and ani-

mals, crops with breeding based on progeny testing), or (ii)

provides an increased genetic gain per unit of cost

(molecular genotyping cheaper than phenotypic evaluation,

disease resistances,…). A good example combining both

advantages is certainly when phenotypic recording is

destructive, killing the individual before it can reproduce

and thereby complicating phenotypic selection (as in silage

maize, root or fresh weight measure during growth, etc.),

whereas marker-based selection permits selection at an

early stage, before reproduction.

In less clear-cut cases, the success of MAS experiments

(in plants) appears to depend mostly on the complexity of

the genetic architecture of the trait. To take contrasting

cases, MAS must surely be more efficient when the trait is

simple (e.g., resistance) as opposed to complex (e.g.,

yield), controlled by few QTLs (as opposed to many

QTLs), when the QTL effects are large (not small), when

there are no G 9 E interactions, and in general when there

are no epistatic interactions (although a counter example

was given above). Also, MAS would be more attractive if it

improves cost efficiency. In such favourable cases, popu-

lation screening, gene pyramiding, or introgression assisted

by markers would be efficient. In the other (opposite)

cases, selection on a marker-phenotype index (see Lande

and Thompson 1990), should be favored to try to control

QTL effects stability from one generation to the next. Also,

more theoretical and experimental work would be neces-

sary to optimize such MAS methods to make them

economically competitive to classical phenotypic methods.

Finding new sources of major genes

Even in the most favorable case described above (a trait

controlled by a small number of QTLs with large, stable

effects), the efficiency of MAS may suffer some

limitations. The first one is that, if MAS is really effective

in cumulating favorable genes, then at some point (not in

the very near future though) a limiting factor may be the

availability of new ‘big’ genes to pursue genetic progress,

when all genes already segregating in commercial varieties

have been used. One solution to this could be the appar-

ently huge potential of plant genetic resources to provide

new genes of agronomic interest. This use of molecular

markers to ‘unlock’ wild genetic variation already sug-

gested ten years ago (Tanksley and McCouch 1997) has

gained a renewal of interest with the experimental dem-

onstration of its potential: in tomato, a pyramid of three

independent yield-promoting genomic regions introduced

from the drought-tolerant green-fruited wild species Sola-

num pennellii increased yield of hybrids by more than 50%

compared to a control market leader variety (Gur and

Zamir 2004; Fridman et al. 2004). The latter result has

been made possible after the creation of a library of

‘Introgression Lines’ between the wild and cultivated

plants. Such work is on-going in various species (Canady

et al. 2005; Szalma et al. 2007; Finkers et al. 2007).

A future challenge in this emerging field is to integrate

metabolic, phenotypic and genomic databases to allow a

wider view of the plant metabolome and the application of

this knowledge within genomics-assisted breeding (Fernie

et al. 2006). In particular, the elucidation of the fundamental

mechanisms of heterosis and epigenetics, and their manip-

ulation, has great potential. Eventually, knowledge of the

relative values of alleles at all loci segregating in a popu-

lation could allow the breeder to design a genotype in silico

and to practice whole genome selection (Gur et al. 2004;

Varshney et al. 2005), even though this may seem unreal-

istic at the moment. This is now also a matter for dedicated

companies (e.g. http://naturesourcegenetics.com).

Another way to find new sources of variation within

cultivated material is to broaden genetic base by using

multi-parental crosses (Blanc et al. 2006), see below.

Accelerated methods of gene pyramiding

Gene pyramiding was described above as one of the ‘best’

MAS methods currently available (along with marker-

assisted introgression, which is complementary since its

aim is slightly different). But, even such a ‘best’ method

can accumulate only a couple of major genes from two

parents, and requires a couple of generations. If large

sources of major genes were really to be unlocked, as

wishfully anticipated in the previous section, then an effi-

cient marker-assisted gene pyramiding scheme would need

to tackle multiple, possibly linked, genes, from multiple

parents. Methodological developments in this area are only

starting (Servin et al. 2004; Wang et al. 2007; Ye et al.

2007) and still need more work.
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Managing and controlling QTL stability

As seen above, the (in-)stability of QTL effects (across

environments, genetic background…), even for QTLs with

reasonably large effects, is one of the main causes of

unexpected results of MAS experiments. Not surprisingly,

QTL stability and QTL by environment interactions have

become a major concern, and there are numerous corre-

sponding projects in various species: study of QTL x

environment effects for grain yield and related traits in

maize (Moreau et al. 2004), stability of QTLs for alpha-acid

content in hop (Humulus lupulus L.) (Cerenak et al. 2006),

heterosis in maize when mapped under several stress con-

ditions (LeDeaux et al. 2006), testing the effects and

stability of QTLs for morphological and agronomical traits

from the wild species Aegilops tauschii (Pestsova et al.

2006), and QTLs with stable and major effects for rice grain

length (Wan et al. 2006). However, assessing the effects of

each QTL in each environment is an immense task.

Dealing with polygenic complex traits

At the beginning of the ‘QTL revolution’, there was a belief

that molecular breeding could remove the frontier between

‘Mendelian’ and ‘Statistical’ Genetics, i.e. between ‘those

who count’ and ‘those who measure’ (Crow 1993). This

turned out not to be completely true. In some cases indeed,

some traits have been turned from ‘complex’, quantitative,

traits into ‘simple’ Mendelian traits after discovering that they

were controlled by a surprisingly low number of QTLs with

large effects. A nice example is the work on morphological

traits that distinguish maize and its progenitor teosinte

(Doebley 2004). Although most of the traits are under the

control of multiple genes and exhibit quantitative inheritance,

a few loci of large effect appear to represent key innovations

during maize domestication. One is the locus for the maize

mutant teosinte branched1 (tb1) (Doebley et al. 1995).

But, this does not hold for the vast majority of traits, so

the frontier has only moved towards more Mendelian traits

(note however that for those traits at the border, the change

has been considerable, including in terms of breeding, as

was the case for many resistance traits in plants). But, for

the still complex traits, a large part of the variation may be

due to QTL with small, unstable effects. The question now

(and challenge) is whether MAS is also profitable for

improving complex polygenic traits? The answer is still a

matter of debate, and an interesting one from both an

applied and a fundamental point of view. There is a para-

dox here, which is well summarized by the following quote

from Rocha et al. (2004): ‘‘Traits with low heritability

demand considerably larger sample sizes to achieve

effective power of QTL detection. This is unfortunate as

traits with low heritability are among those that could most

benefit from QTL-complemented breeding and selection

strategies…’’. Put in extreme terms, this means that on the

one hand MAS would be most effective for traits with high

heritability—but for those traits classical phenotypic

selection is already efficient, so MAS can add little gain if

any—conversely MAS would provide a large additional

gain compared to phenotypic selection for traits with low

heritability—but in that case MAS efficiency is low, due to

a low power of detection of QTL effects, unless very large

sample sizes are used that then make MAS unaffordable …
One way to tackle this ‘‘Squaring the circle’’ problem is

to optimize the model selection process and find a com-

promise between the power of detection, the risk of false

positives and of over fitting the predictive model. Actually,

the efficiency of MAS is maximized when using an ‘opti-

mum’ type I error risk value, which corresponds to a higher

type I error risk than those usually considered in QTL

detection experiments (0.1%). This optimum type I error

for MAS may be at least 5% for low heritability traits

(Moreau et al. 1998; Hospital et al. 1997) or even between

10% and 20% depending on trait heritability (Bernardo

2004). This corresponds to a large False Discovery Rate

(Bernardo 2004). One can also aim to balance type I and

type II error risk in MAS (Moerkerke et al. 2006).

In animal breeding there is a lot of interest now in ‘genomic

selection’ (Meuwissen et al. 2001; Goddard and Hayes 2007),

with the emphasis on using all markers to label regions rather

than pick out specific QTL. The same interest exists in plant

breeding, although investigations are probably at a less

advanced stage. Using a Bayesian regression method Xu

(2003) was able to handle a large number of markers, even

larger than the number of observations, where most of the

markers may have negligible effects. As a result, it is possible

to evaluate the distribution of the marker effects. This was

applied to data from the North American Barley Genome

Mapping Project in double-haploid barley, and to simulated

data sets of F2 and backcross (BC) families. Interest of such

approaches for MAS were investigated by simulations by

Bernardo and Yu (2007) for a population of doubled haploids

derived from a cross between two lines. They showed that this

method was more efficient than methods based on a selected

subset of makers. From an economic point of view, such

methods are of interest only if the cost of genotyping is low

enough (Laurence Moreau, pers. comm.).

There seem to be no clear lower limit for the size of QTLs

that can be found and used for MAS, some private companies

claiming to apply MAS for QTLs explaining less than 10% of

phenotypic variation (Laurence Moreau, pers. comm.).

Integrating MAS in traditional breeding practices

The other way to tackle the ‘‘Squaring the circle’’ problem

above is to incorporate MAS in existing breeding schemes, in
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order to provide additional gain at limited cost. Here, it is

necessary to recall that up to date, optimal molecular

breeding conditions are somehow antagonistic to traditional

plant breeding practices (Moreau et al. 1999). For example,

an optimal MAS design would consist of one replicate of a

large population, whereas breeders would traditionally use

multiple small populations derived from multiple crosses. If

MAS is more costly than phenotypic selection, as is gener-

ally the case for selection on a marker-phenotype index (see

Moreau et al. 2000), this is a disincentive to its use.

One solution to the need to increase sample size at low

cost is to use existing pedigrees, as opposed to designing

new specific crosses (Crepieux et al. 2004). More gener-

ally, that would be almost equivalent to considering the

whole set of available commercial and wild resources in a

species as a vast (structured) population, and applying

strategies already undertaken in outbred populations (ani-

mals) and humans. However, locating quantitative trait loci

is statistically more challenging and considerable research

is needed to provide robust and computationally efficient

methods (Boitard et al. 2006), so whole-genome associa-

tion analysis may be more difficult than first anticipated

(see Hyten et al. 2007 for an example in soybean).

More generally, the use of MAS would certainly be

facilitated if it was better integrated into traditional breeding

practices, rather than considered as a substitute. Such a topic

is still a matter of intense consideration (Stuber et al. 1999;

Kuchel et al. 2005; Bonnett et al. 2005; Hu 2007) that will

likely continue for some time because there is probably no

globally optimal strategy, and each case must be investi-

gated separately depending on the particularities of the

species, breeding objectives and traditions.

Applications in developing countries

The new science of genomics has an important contribution

to make to the development of agriculture in the ‘Third

World’ and thus to improving the livelihoods of many of

the poorest people on earth. However, although some claim

that ‘‘developing countries are already benefiting and

should continue to benefit significantly from advances in

plant biotechnology’’ (Toenniessen et al. 2003), others

notice that ‘‘the persistence of poverty demonstrates,

however, that this contribution is not yet being made’’

(Reece and Haribabu 2007). Compared to historical evi-

dence from the Green Revolution, the present situation is

different in several ways, which raise not only scientific but

also economic and political issues. So far, it is mostly the

industrialized world that is benefiting from the technology,

with two main consequences: (i) Most studies are of the

crops important in the industrialized world, leaving ‘orphan

crops’ in developing countries. These crops, including tef

(Eragrostis tef (Zucc.)), millet, cowpea, and indigenous

vegetables, fruits, roots, and tubers, tend to be locally

important, but receive little public or private investment

(Naylor et al. 2004). (ii) The large private-sector invest-

ment in biotechnology research was directed more to

breeders and farmers in the industrialized world, and rel-

atively little contribution of the technology was made to

increasing food production, nutrition, or farm incomes in

less-developed countries (Herdt 2006). In parallel, public

investment has been reduced. Hence, some advocate that

the strategic leadership role of the public sector is

strengthened, research functions are reallocated to the

private sector, and new policy and organizational mecha-

nisms are used to stimulate pro-poor research in and for

developing-country agriculture (Spielman 2007), or even

recommend policy measures that allow transfer of current

technology to the poor and generate more biotechnology

research focused on problems of the poor (Pray and Na-

seem 2007).

Conclusions

After all that has been said, it is obviously rather difficult to

draw a definite conclusion, except on the few—but cer-

tainly economically important—clear and non ambiguous

cases that have been identified. At this stage, the general

conclusions that have been drawn are a matter of belief

(Price 2006), pessimism (Bernardo 2001), or ‘cautious

optimism’ (Young 1999). The practical answer will surely

come from accumulation of real-life experiments and

practice in various species.

In any case, the issues raised by marker-assisted selec-

tion clearly show that more quantitative genetics theory is

needed, in particular to address selection for most of the

traits that (still) remain complex and polygenic. Such the-

ory must integrate the knowledge that has emerged from

molecular studies. Particularly relevant would be a model

that could accurately (at least) explain or (if at most pos-

sible) predict the (sustained) response to selection that is

observed for traits controlled by both a few QTLs of large

effects, and many genes of smaller, non detectable, effects.
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